Noah Remy , David Touboul , Edith Nicol , Séverine Humbert , Luminita Duma , Pedro Lameiras , Jean-Hugues Renault , Gabriel Paës
{"title":"木质纤维素生物质的化学成像:植物化学制图。","authors":"Noah Remy , David Touboul , Edith Nicol , Séverine Humbert , Luminita Duma , Pedro Lameiras , Jean-Hugues Renault , Gabriel Paës","doi":"10.1016/j.biotechadv.2025.108696","DOIUrl":null,"url":null,"abstract":"<div><div>Lignocellulosic biomass (LB), which encompasses various plant samples, requires thorough characterization to optimize its use as a carbon resource. Chemical imaging simultaneously provides chemical and spatial information, offering significant benefits for LB analysis. This review presents an overview of the most advanced techniques for achieving this goal. By combining spectrometry and microscopy, microspectroscopy enables chemical imaging using various irradiation sources (IR, Raman, fluorescence, among others), allowing for the quantitative mapping of key LB components such as lignins, cellulose, and hemicelluloses. Mass Spectrometry Imaging (MSI) generates a mass spectrum for each spot of a sample thereby creating a chemical image pixel-by-pixel. MSI techniques like Matrix-Assisted Laser Desorption/Ionization (MALDI), down to 2–5 μm spatial resolution, and Secondary Ion Mass Spectrometry (SIMS), down to 300 nm for molecular analysis, effectively map small molecules in LB. In contrast, Desorption ElectroSpray Ionization (DESI) has been applied to plant extracts but remains largely unexplored for LB applications. Nuclear Magnetic Resonance (NMR) provides insight into various LB properties too. Solid-state NMR (ssNMR) and Dynamic Nuclear Polarization (DNP) help elucidate the structure of LB, sometimes aided by 3D atomistic modeling, whereas micro–Magnetic Resonance Imaging (micro-MRI) and Time-Domain (TD-NMR) probe the impact of water on LB properties.</div></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"85 ","pages":"Article 108696"},"PeriodicalIF":12.5000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical imaging of lignocellulosic biomass: Mapping plant chemistry\",\"authors\":\"Noah Remy , David Touboul , Edith Nicol , Séverine Humbert , Luminita Duma , Pedro Lameiras , Jean-Hugues Renault , Gabriel Paës\",\"doi\":\"10.1016/j.biotechadv.2025.108696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lignocellulosic biomass (LB), which encompasses various plant samples, requires thorough characterization to optimize its use as a carbon resource. Chemical imaging simultaneously provides chemical and spatial information, offering significant benefits for LB analysis. This review presents an overview of the most advanced techniques for achieving this goal. By combining spectrometry and microscopy, microspectroscopy enables chemical imaging using various irradiation sources (IR, Raman, fluorescence, among others), allowing for the quantitative mapping of key LB components such as lignins, cellulose, and hemicelluloses. Mass Spectrometry Imaging (MSI) generates a mass spectrum for each spot of a sample thereby creating a chemical image pixel-by-pixel. MSI techniques like Matrix-Assisted Laser Desorption/Ionization (MALDI), down to 2–5 μm spatial resolution, and Secondary Ion Mass Spectrometry (SIMS), down to 300 nm for molecular analysis, effectively map small molecules in LB. In contrast, Desorption ElectroSpray Ionization (DESI) has been applied to plant extracts but remains largely unexplored for LB applications. Nuclear Magnetic Resonance (NMR) provides insight into various LB properties too. Solid-state NMR (ssNMR) and Dynamic Nuclear Polarization (DNP) help elucidate the structure of LB, sometimes aided by 3D atomistic modeling, whereas micro–Magnetic Resonance Imaging (micro-MRI) and Time-Domain (TD-NMR) probe the impact of water on LB properties.</div></div>\",\"PeriodicalId\":8946,\"journal\":{\"name\":\"Biotechnology advances\",\"volume\":\"85 \",\"pages\":\"Article 108696\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology advances\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S073497502500182X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073497502500182X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Chemical imaging of lignocellulosic biomass: Mapping plant chemistry
Lignocellulosic biomass (LB), which encompasses various plant samples, requires thorough characterization to optimize its use as a carbon resource. Chemical imaging simultaneously provides chemical and spatial information, offering significant benefits for LB analysis. This review presents an overview of the most advanced techniques for achieving this goal. By combining spectrometry and microscopy, microspectroscopy enables chemical imaging using various irradiation sources (IR, Raman, fluorescence, among others), allowing for the quantitative mapping of key LB components such as lignins, cellulose, and hemicelluloses. Mass Spectrometry Imaging (MSI) generates a mass spectrum for each spot of a sample thereby creating a chemical image pixel-by-pixel. MSI techniques like Matrix-Assisted Laser Desorption/Ionization (MALDI), down to 2–5 μm spatial resolution, and Secondary Ion Mass Spectrometry (SIMS), down to 300 nm for molecular analysis, effectively map small molecules in LB. In contrast, Desorption ElectroSpray Ionization (DESI) has been applied to plant extracts but remains largely unexplored for LB applications. Nuclear Magnetic Resonance (NMR) provides insight into various LB properties too. Solid-state NMR (ssNMR) and Dynamic Nuclear Polarization (DNP) help elucidate the structure of LB, sometimes aided by 3D atomistic modeling, whereas micro–Magnetic Resonance Imaging (micro-MRI) and Time-Domain (TD-NMR) probe the impact of water on LB properties.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.