剂量-反应模型的模型稳健设计。

IF 1.7 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2025-07-03 DOI:10.1093/biomtc/ujaf112
Belmiro P M Duarte, Anthony C Atkinson, Nuno M C Oliveira
{"title":"剂量-反应模型的模型稳健设计。","authors":"Belmiro P M Duarte, Anthony C Atkinson, Nuno M C Oliveira","doi":"10.1093/biomtc/ujaf112","DOIUrl":null,"url":null,"abstract":"<p><p>An optimal experimental design is a structured data collection plan aimed at maximizing the amount of information gathered. Determining an optimal experimental design, however, relies on the assumption that a predetermined model structure, relating the response and covariates, is known a priori. In practical scenarios, such as dose-response modeling, the form of the model representing the \"true\" relationship is frequently unknown, although there exists a finite set or pool of potential alternative models. Designing experiments based on a single model from this set may lead to inefficiency or inadequacy if the \"true\" model differs from that assumed when calculating the design. One approach to minimize the impact of the uncertainty in the model on the experimental plan is known as model robust design. In this context, we systematically address the challenge of finding approximate optimal model robust experimental designs. Our focus is on locally optimal designs, so allowing some of the models in the pool to be nonlinear. We present three Semidefinite Programming-based formulations, each aligned with one of the classes of model robustness criteria introduced by Läuter. These formulations exploit the semidefinite representability of the robustness criteria, leading to the representation of the robust problem as a semidefinite program. To ensure comparability of information measures across various models, we employ standardized designs. To illustrate the application of our approach, we consider a dose-response study where, initially, seven models were postulated as potential candidates to describe the dose-response relationship.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model robust designs for dose-response models.\",\"authors\":\"Belmiro P M Duarte, Anthony C Atkinson, Nuno M C Oliveira\",\"doi\":\"10.1093/biomtc/ujaf112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An optimal experimental design is a structured data collection plan aimed at maximizing the amount of information gathered. Determining an optimal experimental design, however, relies on the assumption that a predetermined model structure, relating the response and covariates, is known a priori. In practical scenarios, such as dose-response modeling, the form of the model representing the \\\"true\\\" relationship is frequently unknown, although there exists a finite set or pool of potential alternative models. Designing experiments based on a single model from this set may lead to inefficiency or inadequacy if the \\\"true\\\" model differs from that assumed when calculating the design. One approach to minimize the impact of the uncertainty in the model on the experimental plan is known as model robust design. In this context, we systematically address the challenge of finding approximate optimal model robust experimental designs. Our focus is on locally optimal designs, so allowing some of the models in the pool to be nonlinear. We present three Semidefinite Programming-based formulations, each aligned with one of the classes of model robustness criteria introduced by Läuter. These formulations exploit the semidefinite representability of the robustness criteria, leading to the representation of the robust problem as a semidefinite program. To ensure comparability of information measures across various models, we employ standardized designs. To illustrate the application of our approach, we consider a dose-response study where, initially, seven models were postulated as potential candidates to describe the dose-response relationship.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf112\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf112","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

最佳实验设计是一个结构化的数据收集计划,旨在最大限度地收集信息。然而,确定最佳实验设计依赖于一个预先确定的模型结构的假设,该模型结构与响应和协变量有关,是已知的先验。在实际情况中,例如剂量-反应建模,尽管存在有限的备选模型集或库,但代表“真实”关系的模型的形式往往是未知的。如果“真实”模型与计算设计时假设的模型不同,则基于这组模型中的单个模型设计实验可能会导致效率低下或不充分。将模型中的不确定性对实验计划的影响最小化的一种方法被称为模型稳健设计。在这种情况下,我们系统地解决了寻找近似最优模型稳健实验设计的挑战。我们的重点是局部最优设计,因此允许池中的一些模型是非线性的。我们提出了三个基于半确定规划的公式,每个公式都与Läuter引入的一类模型鲁棒性标准相一致。这些公式利用了鲁棒性准则的半定可表示性,从而将鲁棒问题表示为半定规划。为了确保不同模型间信息度量的可比性,我们采用了标准化设计。为了说明我们方法的应用,我们考虑了一项剂量-反应研究,其中最初假设了七个模型作为描述剂量-反应关系的潜在候选模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model robust designs for dose-response models.

An optimal experimental design is a structured data collection plan aimed at maximizing the amount of information gathered. Determining an optimal experimental design, however, relies on the assumption that a predetermined model structure, relating the response and covariates, is known a priori. In practical scenarios, such as dose-response modeling, the form of the model representing the "true" relationship is frequently unknown, although there exists a finite set or pool of potential alternative models. Designing experiments based on a single model from this set may lead to inefficiency or inadequacy if the "true" model differs from that assumed when calculating the design. One approach to minimize the impact of the uncertainty in the model on the experimental plan is known as model robust design. In this context, we systematically address the challenge of finding approximate optimal model robust experimental designs. Our focus is on locally optimal designs, so allowing some of the models in the pool to be nonlinear. We present three Semidefinite Programming-based formulations, each aligned with one of the classes of model robustness criteria introduced by Läuter. These formulations exploit the semidefinite representability of the robustness criteria, leading to the representation of the robust problem as a semidefinite program. To ensure comparability of information measures across various models, we employ standardized designs. To illustrate the application of our approach, we consider a dose-response study where, initially, seven models were postulated as potential candidates to describe the dose-response relationship.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信