Zhaojia Wang, Shiran Yu, Xiao Du, Xuzhen Yan, Yanguo Xin
{"title":"支链氨基酸代谢在衰老中的作用。","authors":"Zhaojia Wang, Shiran Yu, Xiao Du, Xuzhen Yan, Yanguo Xin","doi":"10.1007/s10522-025-10309-9","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is a complex biochemical phenomenon that considerably impacts both individual health and societal dynamics. Recent researches have emphasized the essential function of metabolism in the processes of aging and longevity. Metabolites-chemical byproducts produced by the host organism and its symbiotic partners, including the microbiota, are generated through numerous metabolic pathways. In the last fifteen years, major progress has been made in elucidating the metabolism of BCAAs and the detailed molecular mechanisms that connect BCAAs homeostasis to the aging process. The growing body of literature presents a comprehensive view of the tissue- and disease-specific regulatory mechanisms governing BCAAs and their activation of various molecular pathways. These pathways link fluctuations in BCAA levels to the onset and progression of age-related diseases. This review seeks to consolidate current knowledge on the factors influencing BCAA levels and their metabolic pathways. It further aims to elucidate the molecular mechanisms linking dysregulated BCAA homeostasis to age-related diseases, evaluate epidemiological evidence correlating BCAAs with various cardiovascular conditions, and identify gaps in current understanding that warrant further investigation.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"26 5","pages":"169"},"PeriodicalIF":4.1000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of branched chain amino acid metabolism on aging.\",\"authors\":\"Zhaojia Wang, Shiran Yu, Xiao Du, Xuzhen Yan, Yanguo Xin\",\"doi\":\"10.1007/s10522-025-10309-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aging is a complex biochemical phenomenon that considerably impacts both individual health and societal dynamics. Recent researches have emphasized the essential function of metabolism in the processes of aging and longevity. Metabolites-chemical byproducts produced by the host organism and its symbiotic partners, including the microbiota, are generated through numerous metabolic pathways. In the last fifteen years, major progress has been made in elucidating the metabolism of BCAAs and the detailed molecular mechanisms that connect BCAAs homeostasis to the aging process. The growing body of literature presents a comprehensive view of the tissue- and disease-specific regulatory mechanisms governing BCAAs and their activation of various molecular pathways. These pathways link fluctuations in BCAA levels to the onset and progression of age-related diseases. This review seeks to consolidate current knowledge on the factors influencing BCAA levels and their metabolic pathways. It further aims to elucidate the molecular mechanisms linking dysregulated BCAA homeostasis to age-related diseases, evaluate epidemiological evidence correlating BCAAs with various cardiovascular conditions, and identify gaps in current understanding that warrant further investigation.</p>\",\"PeriodicalId\":8909,\"journal\":{\"name\":\"Biogerontology\",\"volume\":\"26 5\",\"pages\":\"169\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogerontology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10522-025-10309-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-025-10309-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Role of branched chain amino acid metabolism on aging.
Aging is a complex biochemical phenomenon that considerably impacts both individual health and societal dynamics. Recent researches have emphasized the essential function of metabolism in the processes of aging and longevity. Metabolites-chemical byproducts produced by the host organism and its symbiotic partners, including the microbiota, are generated through numerous metabolic pathways. In the last fifteen years, major progress has been made in elucidating the metabolism of BCAAs and the detailed molecular mechanisms that connect BCAAs homeostasis to the aging process. The growing body of literature presents a comprehensive view of the tissue- and disease-specific regulatory mechanisms governing BCAAs and their activation of various molecular pathways. These pathways link fluctuations in BCAA levels to the onset and progression of age-related diseases. This review seeks to consolidate current knowledge on the factors influencing BCAA levels and their metabolic pathways. It further aims to elucidate the molecular mechanisms linking dysregulated BCAA homeostasis to age-related diseases, evaluate epidemiological evidence correlating BCAAs with various cardiovascular conditions, and identify gaps in current understanding that warrant further investigation.
期刊介绍:
The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments.
Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.