{"title":"仿生设计在艺术设计中的应用研究。","authors":"Congrong Xiao, Dongkwon Seong","doi":"10.3390/biomimetics10080541","DOIUrl":null,"url":null,"abstract":"<p><p>Biomimetic design, derived from the study of biological systems, has emerged as a pivotal methodology in contemporary art and design. By systematically integrating the morphological traits, structural principles, and functional mechanisms of living organisms into design thinking, it provides both a novel theoretical perspective and methodological support for modern design practice. This design philosophy draws abundant inspiration from nature's aesthetics and achieves a profound fusion of organic form and artistic expression. This study systematically traces the theoretical evolution of biomimetic design-from its early phase of direct form-mimicry to today's holistic, systems-based approach-and clarifies its interdisciplinary logic and developmental trajectory. We examine its applications in public installations, product development, architecture, and fashion. Through a structured analysis of plant-inspired, animal-inspired, and ecosystem-inspired strategies-linked with the aesthetic demands and cultural contexts of design-this study uncovers the underlying mechanisms by which biological models drive innovation. The findings demonstrate that, by organically combining form simulation, function optimization, and ecological awareness, biomimetic design not only elevates the aesthetic value, visual impact, and emotional resonance of design works but also amplifies their social role and cultural significance. Moreover, its interdisciplinary potential in materials innovation, technological integration, and environmental sustainability highlights unique pathways for addressing complex contemporary challenges. This study adopts a methodology that blends case-study analysis and theoretical interpretation. Through an in-depth examination of exemplar projects, it validates that biomimetic design not only achieves a seamless unity of function and form but also offers a robust theoretical framework and practical strategies for sustainable design implementation. These insights advance both the theoretical depth and practical innovation of the design discipline.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383767/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research on the Application of Biomimetic Design in Art and Design.\",\"authors\":\"Congrong Xiao, Dongkwon Seong\",\"doi\":\"10.3390/biomimetics10080541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomimetic design, derived from the study of biological systems, has emerged as a pivotal methodology in contemporary art and design. By systematically integrating the morphological traits, structural principles, and functional mechanisms of living organisms into design thinking, it provides both a novel theoretical perspective and methodological support for modern design practice. This design philosophy draws abundant inspiration from nature's aesthetics and achieves a profound fusion of organic form and artistic expression. This study systematically traces the theoretical evolution of biomimetic design-from its early phase of direct form-mimicry to today's holistic, systems-based approach-and clarifies its interdisciplinary logic and developmental trajectory. We examine its applications in public installations, product development, architecture, and fashion. Through a structured analysis of plant-inspired, animal-inspired, and ecosystem-inspired strategies-linked with the aesthetic demands and cultural contexts of design-this study uncovers the underlying mechanisms by which biological models drive innovation. The findings demonstrate that, by organically combining form simulation, function optimization, and ecological awareness, biomimetic design not only elevates the aesthetic value, visual impact, and emotional resonance of design works but also amplifies their social role and cultural significance. Moreover, its interdisciplinary potential in materials innovation, technological integration, and environmental sustainability highlights unique pathways for addressing complex contemporary challenges. This study adopts a methodology that blends case-study analysis and theoretical interpretation. Through an in-depth examination of exemplar projects, it validates that biomimetic design not only achieves a seamless unity of function and form but also offers a robust theoretical framework and practical strategies for sustainable design implementation. These insights advance both the theoretical depth and practical innovation of the design discipline.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 8\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10080541\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10080541","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on the Application of Biomimetic Design in Art and Design.
Biomimetic design, derived from the study of biological systems, has emerged as a pivotal methodology in contemporary art and design. By systematically integrating the morphological traits, structural principles, and functional mechanisms of living organisms into design thinking, it provides both a novel theoretical perspective and methodological support for modern design practice. This design philosophy draws abundant inspiration from nature's aesthetics and achieves a profound fusion of organic form and artistic expression. This study systematically traces the theoretical evolution of biomimetic design-from its early phase of direct form-mimicry to today's holistic, systems-based approach-and clarifies its interdisciplinary logic and developmental trajectory. We examine its applications in public installations, product development, architecture, and fashion. Through a structured analysis of plant-inspired, animal-inspired, and ecosystem-inspired strategies-linked with the aesthetic demands and cultural contexts of design-this study uncovers the underlying mechanisms by which biological models drive innovation. The findings demonstrate that, by organically combining form simulation, function optimization, and ecological awareness, biomimetic design not only elevates the aesthetic value, visual impact, and emotional resonance of design works but also amplifies their social role and cultural significance. Moreover, its interdisciplinary potential in materials innovation, technological integration, and environmental sustainability highlights unique pathways for addressing complex contemporary challenges. This study adopts a methodology that blends case-study analysis and theoretical interpretation. Through an in-depth examination of exemplar projects, it validates that biomimetic design not only achieves a seamless unity of function and form but also offers a robust theoretical framework and practical strategies for sustainable design implementation. These insights advance both the theoretical depth and practical innovation of the design discipline.