{"title":"利用基于xlstm的深度学习和空间注意和滤波器库技术增强SSVEP仿生拼写。","authors":"Liuyuan Dong, Chengzhi Xu, Ruizhen Xie, Xuyang Wang, Wanli Yang, Yimeng Li","doi":"10.3390/biomimetics10080554","DOIUrl":null,"url":null,"abstract":"<p><p>Steady-State Visual Evoked Potentials (SSVEPs) have emerged as an efficient means of interaction in brain-computer interfaces (BCIs), achieving bioinspired efficient language output for individuals with aphasia. Addressing the underutilization of frequency information of SSVEPs and redundant computation by existing transformer-based deep learning methods, this paper analyzes signals from both the time and frequency domains, proposing a stacked encoder-decoder (SED) network architecture based on an xLSTM model and spatial attention mechanism, termed SED-xLSTM, which firstly applies xLSTM to the SSVEP speller field. This model takes the low-channel spectrogram as input and employs the filter bank technique to make full use of harmonic information. By leveraging a gating mechanism, SED-xLSTM effectively extracts and fuses high-dimensional spatial-channel semantic features from SSVEP signals. Experimental results on three public datasets demonstrate the superior performance of SED-xLSTM in terms of classification accuracy and information transfer rate, particularly outperforming existing methods under cross-validation across various temporal scales.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383547/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced SSVEP Bionic Spelling via xLSTM-Based Deep Learning with Spatial Attention and Filter Bank Techniques.\",\"authors\":\"Liuyuan Dong, Chengzhi Xu, Ruizhen Xie, Xuyang Wang, Wanli Yang, Yimeng Li\",\"doi\":\"10.3390/biomimetics10080554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Steady-State Visual Evoked Potentials (SSVEPs) have emerged as an efficient means of interaction in brain-computer interfaces (BCIs), achieving bioinspired efficient language output for individuals with aphasia. Addressing the underutilization of frequency information of SSVEPs and redundant computation by existing transformer-based deep learning methods, this paper analyzes signals from both the time and frequency domains, proposing a stacked encoder-decoder (SED) network architecture based on an xLSTM model and spatial attention mechanism, termed SED-xLSTM, which firstly applies xLSTM to the SSVEP speller field. This model takes the low-channel spectrogram as input and employs the filter bank technique to make full use of harmonic information. By leveraging a gating mechanism, SED-xLSTM effectively extracts and fuses high-dimensional spatial-channel semantic features from SSVEP signals. Experimental results on three public datasets demonstrate the superior performance of SED-xLSTM in terms of classification accuracy and information transfer rate, particularly outperforming existing methods under cross-validation across various temporal scales.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 8\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383547/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10080554\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10080554","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced SSVEP Bionic Spelling via xLSTM-Based Deep Learning with Spatial Attention and Filter Bank Techniques.
Steady-State Visual Evoked Potentials (SSVEPs) have emerged as an efficient means of interaction in brain-computer interfaces (BCIs), achieving bioinspired efficient language output for individuals with aphasia. Addressing the underutilization of frequency information of SSVEPs and redundant computation by existing transformer-based deep learning methods, this paper analyzes signals from both the time and frequency domains, proposing a stacked encoder-decoder (SED) network architecture based on an xLSTM model and spatial attention mechanism, termed SED-xLSTM, which firstly applies xLSTM to the SSVEP speller field. This model takes the low-channel spectrogram as input and employs the filter bank technique to make full use of harmonic information. By leveraging a gating mechanism, SED-xLSTM effectively extracts and fuses high-dimensional spatial-channel semantic features from SSVEP signals. Experimental results on three public datasets demonstrate the superior performance of SED-xLSTM in terms of classification accuracy and information transfer rate, particularly outperforming existing methods under cross-validation across various temporal scales.