基于候鸟的自适应卡尔曼滤波在非结构化地形中的鲁棒导航。

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Zijie Zhou, Yitao Huang, Jiyu Sun
{"title":"基于候鸟的自适应卡尔曼滤波在非结构化地形中的鲁棒导航。","authors":"Zijie Zhou, Yitao Huang, Jiyu Sun","doi":"10.3390/biomimetics10080543","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a bionic extended Kalman filter (EKF) state estimation algorithm for agricultural planters, inspired by the bionic mechanism of migratory birds navigating in complex environments, where migratory birds achieve precise localization behaviors by fusing multi-sensory information (e.g., geomagnetic field, visual landmarks, and somatosensory balance). The algorithm mimics the migratory bird's ability to integrate multimodal information by fusing laser SLAM, inertial measurement unit (IMU), and GPS data to estimate the position, velocity, and attitude of the planter in real time. Adopting a nonlinear processing approach, the EKF effectively handles nonlinear dynamic characteristics in complex terrain, similar to the adaptive response of a biological nervous system to environmental perturbations. The algorithm demonstrates bio-inspired robustness through the derivation of the nonlinear dynamic teaching model and measurement model and is able to provide high-precision state estimation in complex environments such as mountainous or hilly terrain. Simulation results show that the algorithm significantly improves the navigation accuracy of the planter in unstructured environments. A new method of bio-inspired adaptive state estimation is provided.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383965/pdf/","citationCount":"0","resultStr":"{\"title\":\"Migratory Bird-Inspired Adaptive Kalman Filtering for Robust Navigation of Autonomous Agricultural Planters in Unstructured Terrains.\",\"authors\":\"Zijie Zhou, Yitao Huang, Jiyu Sun\",\"doi\":\"10.3390/biomimetics10080543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a bionic extended Kalman filter (EKF) state estimation algorithm for agricultural planters, inspired by the bionic mechanism of migratory birds navigating in complex environments, where migratory birds achieve precise localization behaviors by fusing multi-sensory information (e.g., geomagnetic field, visual landmarks, and somatosensory balance). The algorithm mimics the migratory bird's ability to integrate multimodal information by fusing laser SLAM, inertial measurement unit (IMU), and GPS data to estimate the position, velocity, and attitude of the planter in real time. Adopting a nonlinear processing approach, the EKF effectively handles nonlinear dynamic characteristics in complex terrain, similar to the adaptive response of a biological nervous system to environmental perturbations. The algorithm demonstrates bio-inspired robustness through the derivation of the nonlinear dynamic teaching model and measurement model and is able to provide high-precision state estimation in complex environments such as mountainous or hilly terrain. Simulation results show that the algorithm significantly improves the navigation accuracy of the planter in unstructured environments. A new method of bio-inspired adaptive state estimation is provided.</p>\",\"PeriodicalId\":8907,\"journal\":{\"name\":\"Biomimetics\",\"volume\":\"10 8\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12383965/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/biomimetics10080543\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10080543","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文以复杂环境下候鸟导航的仿生机制为灵感,提出了一种农业种植机的扩展卡尔曼滤波(EKF)状态估计算法,候鸟通过融合多感官信息(如地磁场、视觉地标和体感平衡)实现精确定位行为。该算法通过融合激光SLAM、惯性测量单元(IMU)和GPS数据,模拟候鸟整合多模态信息的能力,实时估计种植机的位置、速度和姿态。采用非线性处理方法,EKF有效处理复杂地形中的非线性动态特性,类似于生物神经系统对环境扰动的自适应响应。该算法通过推导非线性动态教学模型和测量模型,证明了仿生鲁棒性,能够在山地或丘陵地形等复杂环境下提供高精度的状态估计。仿真结果表明,该算法显著提高了种植机在非结构化环境下的导航精度。提出了一种新的仿生自适应状态估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Migratory Bird-Inspired Adaptive Kalman Filtering for Robust Navigation of Autonomous Agricultural Planters in Unstructured Terrains.

Migratory Bird-Inspired Adaptive Kalman Filtering for Robust Navigation of Autonomous Agricultural Planters in Unstructured Terrains.

Migratory Bird-Inspired Adaptive Kalman Filtering for Robust Navigation of Autonomous Agricultural Planters in Unstructured Terrains.

Migratory Bird-Inspired Adaptive Kalman Filtering for Robust Navigation of Autonomous Agricultural Planters in Unstructured Terrains.

This paper presents a bionic extended Kalman filter (EKF) state estimation algorithm for agricultural planters, inspired by the bionic mechanism of migratory birds navigating in complex environments, where migratory birds achieve precise localization behaviors by fusing multi-sensory information (e.g., geomagnetic field, visual landmarks, and somatosensory balance). The algorithm mimics the migratory bird's ability to integrate multimodal information by fusing laser SLAM, inertial measurement unit (IMU), and GPS data to estimate the position, velocity, and attitude of the planter in real time. Adopting a nonlinear processing approach, the EKF effectively handles nonlinear dynamic characteristics in complex terrain, similar to the adaptive response of a biological nervous system to environmental perturbations. The algorithm demonstrates bio-inspired robustness through the derivation of the nonlinear dynamic teaching model and measurement model and is able to provide high-precision state estimation in complex environments such as mountainous or hilly terrain. Simulation results show that the algorithm significantly improves the navigation accuracy of the planter in unstructured environments. A new method of bio-inspired adaptive state estimation is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信