EXPRESS:用浸没等离子体分析液体的同位素检测和元素分辨率(SPIDER)。

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Davis Bryars, Munmun Jahan, Kayla Hahn, Alina Jugan, Amanda Leong, Ammon Williams, Alexander Bataller
{"title":"EXPRESS:用浸没等离子体分析液体的同位素检测和元素分辨率(SPIDER)。","authors":"Davis Bryars, Munmun Jahan, Kayla Hahn, Alina Jugan, Amanda Leong, Ammon Williams, Alexander Bataller","doi":"10.1177/00037028251374696","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a sensor called the Submerged Plasma for Isotopic Detection and Elemental Resolution (SPIDER) probe, which uses an atmospheric pressure glow discharge below the surface of liquids to excite species in the liquid. Through emission spectroscopy of molten salts, liquid metals, and heavy water, we demonstrated the SPIDER probe's high resolution, accuracy, and versatility. We successfully identified trace concentrations of transition and rare-earth metals in molten salts and detected the isotopic shift of the H<math><msub><mrow></mrow><mi>β</mi></msub><mo>→</mo></math> D<math><msub><mrow></mrow><mi>β</mi></msub></math> emission line. Our analysis revealed unconventional spectral alkali line shapes, indicating two competing excitation modes: film explosion and droplet vaporization. The film explosion mode, characterized by dense plasma, exhibited self-reversal and broadband continuum emission, while the droplet vaporization mode, associated with diffusive plasma, produced narrow-line emissions. By analyzing circuit transients alongside individual plasma events, we observed that film explosions generate higher currents, likely due to a shorter plasma length as the current preferentially flows through the thin liquid layer. Altogether, our results highlight the SPIDER probe's efficacy and flexibility, making it well-suited for online material quantification of liquids in extreme environments.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028251374696"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Liquids Using the Submerged Plasma for Isotopic Detection and Elemental Resolution (SPIDER).\",\"authors\":\"Davis Bryars, Munmun Jahan, Kayla Hahn, Alina Jugan, Amanda Leong, Ammon Williams, Alexander Bataller\",\"doi\":\"10.1177/00037028251374696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We developed a sensor called the Submerged Plasma for Isotopic Detection and Elemental Resolution (SPIDER) probe, which uses an atmospheric pressure glow discharge below the surface of liquids to excite species in the liquid. Through emission spectroscopy of molten salts, liquid metals, and heavy water, we demonstrated the SPIDER probe's high resolution, accuracy, and versatility. We successfully identified trace concentrations of transition and rare-earth metals in molten salts and detected the isotopic shift of the H<math><msub><mrow></mrow><mi>β</mi></msub><mo>→</mo></math> D<math><msub><mrow></mrow><mi>β</mi></msub></math> emission line. Our analysis revealed unconventional spectral alkali line shapes, indicating two competing excitation modes: film explosion and droplet vaporization. The film explosion mode, characterized by dense plasma, exhibited self-reversal and broadband continuum emission, while the droplet vaporization mode, associated with diffusive plasma, produced narrow-line emissions. By analyzing circuit transients alongside individual plasma events, we observed that film explosions generate higher currents, likely due to a shorter plasma length as the current preferentially flows through the thin liquid layer. Altogether, our results highlight the SPIDER probe's efficacy and flexibility, making it well-suited for online material quantification of liquids in extreme environments.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"37028251374696\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028251374696\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028251374696","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种名为沉入等离子体的传感器,用于同位素探测和元素分辨率(SPIDER)探针,它使用液体表面下的大气压辉光放电来激发液体中的物种。通过熔盐、液态金属和重水的发射光谱,我们展示了SPIDER探测器的高分辨率、准确性和多功能性。我们成功地鉴定了熔盐中痕量过渡金属和稀土金属的浓度,并检测了Hβ→Dβ发射谱线的同位素位移。我们的分析揭示了非常规的谱碱线形状,表明了两种相互竞争的激发模式:薄膜爆炸和液滴蒸发。以致密等离子体为特征的薄膜爆炸模式表现为自反转和宽带连续发射,而以扩散等离子体为特征的液滴汽化模式则表现为窄线发射。通过分析电路瞬态和单个等离子体事件,我们观察到薄膜爆炸产生更高的电流,可能是由于较短的等离子体长度,因为电流优先流过薄液体层。总之,我们的研究结果突出了SPIDER探针的有效性和灵活性,使其非常适合于极端环境下液体的在线材料定量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Liquids Using the Submerged Plasma for Isotopic Detection and Elemental Resolution (SPIDER).

We developed a sensor called the Submerged Plasma for Isotopic Detection and Elemental Resolution (SPIDER) probe, which uses an atmospheric pressure glow discharge below the surface of liquids to excite species in the liquid. Through emission spectroscopy of molten salts, liquid metals, and heavy water, we demonstrated the SPIDER probe's high resolution, accuracy, and versatility. We successfully identified trace concentrations of transition and rare-earth metals in molten salts and detected the isotopic shift of the Hβ Dβ emission line. Our analysis revealed unconventional spectral alkali line shapes, indicating two competing excitation modes: film explosion and droplet vaporization. The film explosion mode, characterized by dense plasma, exhibited self-reversal and broadband continuum emission, while the droplet vaporization mode, associated with diffusive plasma, produced narrow-line emissions. By analyzing circuit transients alongside individual plasma events, we observed that film explosions generate higher currents, likely due to a shorter plasma length as the current preferentially flows through the thin liquid layer. Altogether, our results highlight the SPIDER probe's efficacy and flexibility, making it well-suited for online material quantification of liquids in extreme environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信