利用功能注释绘制与格鲁耶尔氏病相关的罕见变异。

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
American journal of human genetics Pub Date : 2025-09-04 Epub Date: 2025-08-20 DOI:10.1016/j.ajhg.2025.07.016
Anjali Das, Chirag Lakhani, Chloé Terwagne, Jui-Shan T Lin, Tatsuhiko Naito, Towfique Raj, David A Knowles
{"title":"利用功能注释绘制与格鲁耶尔氏病相关的罕见变异。","authors":"Anjali Das, Chirag Lakhani, Chloé Terwagne, Jui-Shan T Lin, Tatsuhiko Naito, Towfique Raj, David A Knowles","doi":"10.1016/j.ajhg.2025.07.016","DOIUrl":null,"url":null,"abstract":"<p><p>Increased availability of whole-genome sequencing (WGS) has facilitated the study of rare variants (RVs) in complex diseases. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most do not fully leverage the availability of variant-level functional annotations. We propose genome-wide rare variant enrichment evaluation (gruyere), an empirical Bayesian framework that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization. We apply gruyere to WGS data from the Alzheimer's Disease Sequencing Project to identify Alzheimer disease (AD)-associated genes and annotations. Growing evidence suggests that the disruption of microglial regulation is a key contributor to AD risk, yet existing methods have not examined rare non-coding effects that incorporate such cell-type-specific information. To address this gap, we (1) define per-gene non-coding RV test sets using predicted enhancer and promoter regions in microglia and other brain cell types (oligodendrocytes, astrocytes, and neurons) and (2) include cell-type-specific variant effect predictions (VEPs) as functional annotations. gruyere identifies 13 significant genetic associations not detected by other RV methods, four of which remain significant in omnibus tests. We find that deep-learning-based VEPs for splicing, transcription factor binding, and chromatin state are highly predictive of functional non-coding RVs. Our study establishes a robust framework incorporating functional annotations, coding RVs, and cell-type-associated non-coding RVs to perform genome-wide association tests, uncovering AD-relevant genes and annotations.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2138-2151"},"PeriodicalIF":8.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373115/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging functional annotations to map rare variants associated with Alzheimer disease with gruyere.\",\"authors\":\"Anjali Das, Chirag Lakhani, Chloé Terwagne, Jui-Shan T Lin, Tatsuhiko Naito, Towfique Raj, David A Knowles\",\"doi\":\"10.1016/j.ajhg.2025.07.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increased availability of whole-genome sequencing (WGS) has facilitated the study of rare variants (RVs) in complex diseases. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most do not fully leverage the availability of variant-level functional annotations. We propose genome-wide rare variant enrichment evaluation (gruyere), an empirical Bayesian framework that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization. We apply gruyere to WGS data from the Alzheimer's Disease Sequencing Project to identify Alzheimer disease (AD)-associated genes and annotations. Growing evidence suggests that the disruption of microglial regulation is a key contributor to AD risk, yet existing methods have not examined rare non-coding effects that incorporate such cell-type-specific information. To address this gap, we (1) define per-gene non-coding RV test sets using predicted enhancer and promoter regions in microglia and other brain cell types (oligodendrocytes, astrocytes, and neurons) and (2) include cell-type-specific variant effect predictions (VEPs) as functional annotations. gruyere identifies 13 significant genetic associations not detected by other RV methods, four of which remain significant in omnibus tests. We find that deep-learning-based VEPs for splicing, transcription factor binding, and chromatin state are highly predictive of functional non-coding RVs. Our study establishes a robust framework incorporating functional annotations, coding RVs, and cell-type-associated non-coding RVs to perform genome-wide association tests, uncovering AD-relevant genes and annotations.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"2138-2151\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12373115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2025.07.016\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.07.016","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

全基因组测序(WGS)的增加促进了复杂疾病中罕见变异(RVs)的研究。多种RV关联测试可用于研究基因型和表型之间的关系,但大多数没有充分利用变异水平功能注释的可用性。我们提出了全基因组罕见变异富集评估(gruyere),这是一个经验贝叶斯框架,通过学习功能注释的全局特征特定权重来补充现有方法,以提高变异优先级。我们将gruyere应用于来自阿尔茨海默病测序项目的WGS数据,以识别阿尔茨海默病(AD)相关基因和注释。越来越多的证据表明,小胶质细胞调节的破坏是阿尔茨海默病风险的一个关键因素,但现有的方法尚未检查包含这种细胞类型特异性信息的罕见非编码效应。为了解决这一差距,我们(1)定义了每个基因的非编码RV测试集,使用小胶质细胞和其他脑细胞类型(少突胶质细胞、星形胶质细胞和神经元)中预测的增强子和启动子区域;(2)将细胞类型特异性变异效应预测(vep)作为功能注释。gruyere鉴定出其他RV方法未检测到的13个显著遗传关联,其中4个在综合试验中仍然显著。我们发现基于深度学习的剪接、转录因子结合和染色质状态vep对功能性非编码RVs具有高度预测性。我们的研究建立了一个强大的框架,将功能注释、编码RVs和细胞类型相关的非编码RVs结合起来,进行全基因组关联测试,揭示ad相关基因和注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging functional annotations to map rare variants associated with Alzheimer disease with gruyere.

Increased availability of whole-genome sequencing (WGS) has facilitated the study of rare variants (RVs) in complex diseases. Multiple RV association tests are available to study the relationship between genotype and phenotype, but most do not fully leverage the availability of variant-level functional annotations. We propose genome-wide rare variant enrichment evaluation (gruyere), an empirical Bayesian framework that complements existing methods by learning global, trait-specific weights for functional annotations to improve variant prioritization. We apply gruyere to WGS data from the Alzheimer's Disease Sequencing Project to identify Alzheimer disease (AD)-associated genes and annotations. Growing evidence suggests that the disruption of microglial regulation is a key contributor to AD risk, yet existing methods have not examined rare non-coding effects that incorporate such cell-type-specific information. To address this gap, we (1) define per-gene non-coding RV test sets using predicted enhancer and promoter regions in microglia and other brain cell types (oligodendrocytes, astrocytes, and neurons) and (2) include cell-type-specific variant effect predictions (VEPs) as functional annotations. gruyere identifies 13 significant genetic associations not detected by other RV methods, four of which remain significant in omnibus tests. We find that deep-learning-based VEPs for splicing, transcription factor binding, and chromatin state are highly predictive of functional non-coding RVs. Our study establishes a robust framework incorporating functional annotations, coding RVs, and cell-type-associated non-coding RVs to perform genome-wide association tests, uncovering AD-relevant genes and annotations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信