肺毛细血管内皮细胞亚型:发育性肺损伤的标志物和反应。

IF 5.3 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Abhijeet Thakur, Geremy Clair, Liang Zhang, Sourabh Soni, Thomas J Mariani, Sule Çataltepe
{"title":"肺毛细血管内皮细胞亚型:发育性肺损伤的标志物和反应。","authors":"Abhijeet Thakur, Geremy Clair, Liang Zhang, Sourabh Soni, Thomas J Mariani, Sule Çataltepe","doi":"10.1165/rcmb.2025-0009OC","DOIUrl":null,"url":null,"abstract":"<p><p>Bronchopulmonary dysplasia is a chronic lung disease that affects preterm infants. Disrupted microvascular growth is a well-recognized pathologic feature of BPD, which plays a critical role in arrested alveologenesis. Recent studies have identified two subpopulations of pulmonary microvascular endothelial cells (ECs): general capillary (gCap) and aerocyte (aCap). In this study, we validated proposed markers for gCap (GPIHBP1, PLVAP, CD93) and aCap (CA4, HPGD) at the protein level and investigated their abundance during late-stage lung development in murine and non-human primate (NHP) lungs. We also examined alterations in the abundance and proliferation of gCap and aCap in NHP and murine models of BPD. Our studies confirmed CA4 and HPGD as specific markers for aCap, while all three putative gCap markers were also detected in non-microvascular endothelial cells. All markers, except for HPGD, showed a gradual increase in abundance during the saccular and alveolar stages of development in NHP lungs. In the NHP model of BPD, the abundance of both aCap markers and GPIHBP1 were decreased, while that of PLVAP and CD93 were increased. Additionally, there was an emergence of CA4<sup>+</sup>HPGD<sup>-</sup>-aCap in BPD lungs. In late-stage control lungs, aCap proliferation was more robust than gCap proliferation, while no significant differences were observed between aCap and gCap proliferation rates in NHP BPD. Notably, in BPD lungs, gCap proliferation was more robust compared to control lungs. This study provides new insights into the distinct regulation patterns of microvascular ECs during lung development and neonatal lung injury in a translationally relevant NHP model.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capillary Endothelial Cell Subtypes in the Lung: Markers and Response to Developmental Lung Injury.\",\"authors\":\"Abhijeet Thakur, Geremy Clair, Liang Zhang, Sourabh Soni, Thomas J Mariani, Sule Çataltepe\",\"doi\":\"10.1165/rcmb.2025-0009OC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bronchopulmonary dysplasia is a chronic lung disease that affects preterm infants. Disrupted microvascular growth is a well-recognized pathologic feature of BPD, which plays a critical role in arrested alveologenesis. Recent studies have identified two subpopulations of pulmonary microvascular endothelial cells (ECs): general capillary (gCap) and aerocyte (aCap). In this study, we validated proposed markers for gCap (GPIHBP1, PLVAP, CD93) and aCap (CA4, HPGD) at the protein level and investigated their abundance during late-stage lung development in murine and non-human primate (NHP) lungs. We also examined alterations in the abundance and proliferation of gCap and aCap in NHP and murine models of BPD. Our studies confirmed CA4 and HPGD as specific markers for aCap, while all three putative gCap markers were also detected in non-microvascular endothelial cells. All markers, except for HPGD, showed a gradual increase in abundance during the saccular and alveolar stages of development in NHP lungs. In the NHP model of BPD, the abundance of both aCap markers and GPIHBP1 were decreased, while that of PLVAP and CD93 were increased. Additionally, there was an emergence of CA4<sup>+</sup>HPGD<sup>-</sup>-aCap in BPD lungs. In late-stage control lungs, aCap proliferation was more robust than gCap proliferation, while no significant differences were observed between aCap and gCap proliferation rates in NHP BPD. Notably, in BPD lungs, gCap proliferation was more robust compared to control lungs. This study provides new insights into the distinct regulation patterns of microvascular ECs during lung development and neonatal lung injury in a translationally relevant NHP model.</p>\",\"PeriodicalId\":7655,\"journal\":{\"name\":\"American Journal of Respiratory Cell and Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Respiratory Cell and Molecular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1165/rcmb.2025-0009OC\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2025-0009OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

支气管肺发育不良是一种影响早产儿的慢性肺部疾病。微血管生长中断是BPD的一个公认的病理特征,它在肺泡生成受阻中起着关键作用。最近的研究已经确定了肺微血管内皮细胞(ECs)的两个亚群:一般毛细血管(gCap)和空气细胞(aCap)。在这项研究中,我们在蛋白水平上验证了gCap (GPIHBP1, PLVAP, CD93)和aCap (CA4, HPGD)的标记,并研究了它们在小鼠和非人灵长类动物(NHP)肺发育后期的丰度。我们还检测了NHP和BPD小鼠模型中gCap和aCap的丰度和增殖的变化。我们的研究证实CA4和HPGD是aCap的特异性标记,而所有三种假定的gCap标记也在非微血管内皮细胞中检测到。在NHP肺的囊状和肺泡发育阶段,除HPGD外,所有标记物的丰度都逐渐增加。在BPD的NHP模型中,aCap和GPIHBP1的丰度均降低,PLVAP和CD93的丰度升高。此外,BPD肺中出现CA4+HPGD- aCap。在晚期对照肺中,aCap的增殖比gCap的增殖更强劲,而在NHP BPD中,aCap和gCap的增殖率没有显著差异。值得注意的是,在BPD肺中,与对照肺相比,gCap的增殖更为强劲。这项研究为在肺发育和新生儿肺损伤过程中微血管内皮细胞的独特调控模式提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capillary Endothelial Cell Subtypes in the Lung: Markers and Response to Developmental Lung Injury.

Bronchopulmonary dysplasia is a chronic lung disease that affects preterm infants. Disrupted microvascular growth is a well-recognized pathologic feature of BPD, which plays a critical role in arrested alveologenesis. Recent studies have identified two subpopulations of pulmonary microvascular endothelial cells (ECs): general capillary (gCap) and aerocyte (aCap). In this study, we validated proposed markers for gCap (GPIHBP1, PLVAP, CD93) and aCap (CA4, HPGD) at the protein level and investigated their abundance during late-stage lung development in murine and non-human primate (NHP) lungs. We also examined alterations in the abundance and proliferation of gCap and aCap in NHP and murine models of BPD. Our studies confirmed CA4 and HPGD as specific markers for aCap, while all three putative gCap markers were also detected in non-microvascular endothelial cells. All markers, except for HPGD, showed a gradual increase in abundance during the saccular and alveolar stages of development in NHP lungs. In the NHP model of BPD, the abundance of both aCap markers and GPIHBP1 were decreased, while that of PLVAP and CD93 were increased. Additionally, there was an emergence of CA4+HPGD--aCap in BPD lungs. In late-stage control lungs, aCap proliferation was more robust than gCap proliferation, while no significant differences were observed between aCap and gCap proliferation rates in NHP BPD. Notably, in BPD lungs, gCap proliferation was more robust compared to control lungs. This study provides new insights into the distinct regulation patterns of microvascular ECs during lung development and neonatal lung injury in a translationally relevant NHP model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信