ALS/FTD发病的c9orf72i3神经元模型中神经元活性依赖性基因失调

IF 4.7 2区 生物学 Q2 CELL BIOLOGY
Layla T Ghaffari, Emily A Welebob, Sarah E B Newton, Ashley V Boehringer, Kelly L Cyliax, Piera Pasinelli, Davide Trotti, Aaron R Haeusler
{"title":"ALS/FTD发病的c9orf72i3神经元模型中神经元活性依赖性基因失调","authors":"Layla T Ghaffari, Emily A Welebob, Sarah E B Newton, Ashley V Boehringer, Kelly L Cyliax, Piera Pasinelli, Davide Trotti, Aaron R Haeusler","doi":"10.1152/ajpcell.00238.2025","DOIUrl":null,"url":null,"abstract":"<p><p>The GGGGCC nucleotide repeat expansion (NRE) mutation in the <i>C9ORF72</i> (C9) gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Neuronal activity plays an essential role in shaping biological processes within both healthy and neurodegenerative disease scenarios. Here, we show that at baseline conditions, C9-NRE-induced pluripotent stem cell-cortical neurons display aberrations in several pathways, including synaptic signaling and transcriptional machinery, potentially priming diseased neurons for an altered response to neuronal stimulation. Indeed, exposure to two pathophysiologically relevant stimulation modes, prolonged membrane depolarization or a blockade of K<sup>+</sup> channels, followed by RNA sequencing, induces a temporally divergent activity-dependent transcriptome of C9-NRE cortical neurons compared with healthy controls. This study provides new insights into how neuronal activity influences the ALS/FTD-associated transcriptome, offering a dataset that enables further exploration of pathways necessary for conferring neuronal resilience or degeneration.<b>NEW & NOTEWORTHY</b> A recent study using iPSC-derived cortical neurons reveals how neuronal activity drives gene dysregulation in <i>C9ORF72</i>-linked ALS/FTD. We uncover synaptic dysfunction, peroxisomal dysregulation, and NPAS4-linked transcriptional shifts, highlighting key disease-modifying pathways. Could these insights pave the way for new therapeutic targets? Explore our research and generate your own discoveries using our interactive dataset included in the link in the article.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1085-C1100"},"PeriodicalIF":4.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuronal activity-dependent gene dysregulation in <i>C9orf72</i> i<sup>3</sup>Neuronal models of ALS/FTD pathogenesis.\",\"authors\":\"Layla T Ghaffari, Emily A Welebob, Sarah E B Newton, Ashley V Boehringer, Kelly L Cyliax, Piera Pasinelli, Davide Trotti, Aaron R Haeusler\",\"doi\":\"10.1152/ajpcell.00238.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The GGGGCC nucleotide repeat expansion (NRE) mutation in the <i>C9ORF72</i> (C9) gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Neuronal activity plays an essential role in shaping biological processes within both healthy and neurodegenerative disease scenarios. Here, we show that at baseline conditions, C9-NRE-induced pluripotent stem cell-cortical neurons display aberrations in several pathways, including synaptic signaling and transcriptional machinery, potentially priming diseased neurons for an altered response to neuronal stimulation. Indeed, exposure to two pathophysiologically relevant stimulation modes, prolonged membrane depolarization or a blockade of K<sup>+</sup> channels, followed by RNA sequencing, induces a temporally divergent activity-dependent transcriptome of C9-NRE cortical neurons compared with healthy controls. This study provides new insights into how neuronal activity influences the ALS/FTD-associated transcriptome, offering a dataset that enables further exploration of pathways necessary for conferring neuronal resilience or degeneration.<b>NEW & NOTEWORTHY</b> A recent study using iPSC-derived cortical neurons reveals how neuronal activity drives gene dysregulation in <i>C9ORF72</i>-linked ALS/FTD. We uncover synaptic dysfunction, peroxisomal dysregulation, and NPAS4-linked transcriptional shifts, highlighting key disease-modifying pathways. Could these insights pave the way for new therapeutic targets? Explore our research and generate your own discoveries using our interactive dataset included in the link in the article.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C1085-C1100\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00238.2025\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00238.2025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

C9orf72 (C9)基因中的GGGGCC核苷酸重复扩增(NRE)突变是ALS和FTD的最常见原因。在健康和神经退行性疾病的情况下,神经元活动在塑造生物过程中起着至关重要的作用。本研究表明,在基线条件下,C9-NRE ipsc -皮质神经元在包括突触信号传导和转录机制在内的几个通路中表现出畸变,这可能导致患病神经元对神经元刺激的反应发生改变。事实上,与健康对照相比,暴露于两种病理生理相关的刺激模式,延长膜去极化或K+通道阻断,随后进行RNA测序,可诱导C9-NRE皮质神经元的活性依赖转录组在时间上出现分化。这项研究为神经元活动如何影响ALS/ ftd相关转录组提供了新的见解,提供了一个数据集,可以进一步探索赋予神经元弹性或变性所需的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuronal activity-dependent gene dysregulation in C9orf72 i3Neuronal models of ALS/FTD pathogenesis.

The GGGGCC nucleotide repeat expansion (NRE) mutation in the C9ORF72 (C9) gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Neuronal activity plays an essential role in shaping biological processes within both healthy and neurodegenerative disease scenarios. Here, we show that at baseline conditions, C9-NRE-induced pluripotent stem cell-cortical neurons display aberrations in several pathways, including synaptic signaling and transcriptional machinery, potentially priming diseased neurons for an altered response to neuronal stimulation. Indeed, exposure to two pathophysiologically relevant stimulation modes, prolonged membrane depolarization or a blockade of K+ channels, followed by RNA sequencing, induces a temporally divergent activity-dependent transcriptome of C9-NRE cortical neurons compared with healthy controls. This study provides new insights into how neuronal activity influences the ALS/FTD-associated transcriptome, offering a dataset that enables further exploration of pathways necessary for conferring neuronal resilience or degeneration.NEW & NOTEWORTHY A recent study using iPSC-derived cortical neurons reveals how neuronal activity drives gene dysregulation in C9ORF72-linked ALS/FTD. We uncover synaptic dysfunction, peroxisomal dysregulation, and NPAS4-linked transcriptional shifts, highlighting key disease-modifying pathways. Could these insights pave the way for new therapeutic targets? Explore our research and generate your own discoveries using our interactive dataset included in the link in the article.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信