再生牙科:生物活性材料在牙本质-牙髓复合体中的应用。

4区 医学 Q2 Biochemistry, Genetics and Molecular Biology
Soner Sismanoglu, Vasfiye Işık, Pınar Ercal
{"title":"再生牙科:生物活性材料在牙本质-牙髓复合体中的应用。","authors":"Soner Sismanoglu, Vasfiye Işık, Pınar Ercal","doi":"10.1007/5584_2025_876","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue engineering in dentistry is revolutionizing the regeneration of dental pulp. The dental pulp is a specialized connective tissue that plays an important role in maintaining tooth health and supporting healing processes. However, exposure of the pulp to harmful factors, such as infections or trauma, can negatively impact its function, leading to inflammation, tissue necrosis, and ultimately pulp loss. As a solution to these challenges, tissue-engineered vital pulp therapies (VPTs) are emerging as an alternative to conventional root canal treatments. These therapies aim to preserve the vitality of the pulp, stimulate natural healing processes, and restore the dentin-pulp structure. Regenerative dentistry is also exploring tissue repair through innovations such as three-dimensional (3D) bioprinting, exosome-based therapies, and novel scaffold structures.This chapter explores the potential of tissue engineering in dental pulp regeneration, focusing on the role of stem cells, growth factors, scaffolds, and bioactive materials. In particular, stem cells derived from dental pulp are critical to this process due to their ability to differentiate into odontoblast-like cells and promote dentin production. The combination of these stem cells with bioactive scaffolds that release growth factors can significantly enhance the healing of pulp tissue. Furthermore, innovative materials, such as calcium silicate-based materials and bioactive glasses, have shown promising results in pulp regeneration and restorative dentin formation. While the future of these therapies is promising, challenges such as clinical application, long-term efficacy, and cost-effectiveness remain. As research advances, the importance of interdisciplinary collaboration and clinical trials will grow in overcoming these barriers.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regenerative Dentistry: Applications of Bioactive Materials in Dentin-Pulp Complex.\",\"authors\":\"Soner Sismanoglu, Vasfiye Işık, Pınar Ercal\",\"doi\":\"10.1007/5584_2025_876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tissue engineering in dentistry is revolutionizing the regeneration of dental pulp. The dental pulp is a specialized connective tissue that plays an important role in maintaining tooth health and supporting healing processes. However, exposure of the pulp to harmful factors, such as infections or trauma, can negatively impact its function, leading to inflammation, tissue necrosis, and ultimately pulp loss. As a solution to these challenges, tissue-engineered vital pulp therapies (VPTs) are emerging as an alternative to conventional root canal treatments. These therapies aim to preserve the vitality of the pulp, stimulate natural healing processes, and restore the dentin-pulp structure. Regenerative dentistry is also exploring tissue repair through innovations such as three-dimensional (3D) bioprinting, exosome-based therapies, and novel scaffold structures.This chapter explores the potential of tissue engineering in dental pulp regeneration, focusing on the role of stem cells, growth factors, scaffolds, and bioactive materials. In particular, stem cells derived from dental pulp are critical to this process due to their ability to differentiate into odontoblast-like cells and promote dentin production. The combination of these stem cells with bioactive scaffolds that release growth factors can significantly enhance the healing of pulp tissue. Furthermore, innovative materials, such as calcium silicate-based materials and bioactive glasses, have shown promising results in pulp regeneration and restorative dentin formation. While the future of these therapies is promising, challenges such as clinical application, long-term efficacy, and cost-effectiveness remain. As research advances, the importance of interdisciplinary collaboration and clinical trials will grow in overcoming these barriers.</p>\",\"PeriodicalId\":7270,\"journal\":{\"name\":\"Advances in experimental medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in experimental medicine and biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/5584_2025_876\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/5584_2025_876","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

组织工程在牙科是革命性的牙髓再生。牙髓是一种特殊的结缔组织,在维持牙齿健康和支持愈合过程中起着重要作用。然而,牙髓暴露于有害因素,如感染或创伤,会对其功能产生负面影响,导致炎症、组织坏死,最终导致牙髓脱落。为了解决这些挑战,组织工程重要牙髓治疗(VPTs)正在成为传统根管治疗的替代方案。这些疗法旨在保持牙髓的活力,刺激自然愈合过程,恢复牙本质-牙髓结构。再生牙科也在通过诸如三维生物打印、外泌体疗法和新型支架结构等创新技术探索组织修复。本章探讨了组织工程在牙髓再生中的潜力,重点是干细胞、生长因子、支架和生物活性材料的作用。特别是,来自牙髓的干细胞对这一过程至关重要,因为它们能够分化成成牙本质样细胞并促进牙本质的产生。将这些干细胞与释放生长因子的生物活性支架结合,可显著促进牙髓组织的愈合。此外,创新材料,如硅酸钙基材料和生物活性玻璃,在牙髓再生和修复性牙本质形成方面显示出有希望的结果。虽然这些疗法的未来是有希望的,但临床应用、长期疗效和成本效益等挑战仍然存在。随着研究的进展,跨学科合作和临床试验在克服这些障碍方面的重要性将会增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regenerative Dentistry: Applications of Bioactive Materials in Dentin-Pulp Complex.

Tissue engineering in dentistry is revolutionizing the regeneration of dental pulp. The dental pulp is a specialized connective tissue that plays an important role in maintaining tooth health and supporting healing processes. However, exposure of the pulp to harmful factors, such as infections or trauma, can negatively impact its function, leading to inflammation, tissue necrosis, and ultimately pulp loss. As a solution to these challenges, tissue-engineered vital pulp therapies (VPTs) are emerging as an alternative to conventional root canal treatments. These therapies aim to preserve the vitality of the pulp, stimulate natural healing processes, and restore the dentin-pulp structure. Regenerative dentistry is also exploring tissue repair through innovations such as three-dimensional (3D) bioprinting, exosome-based therapies, and novel scaffold structures.This chapter explores the potential of tissue engineering in dental pulp regeneration, focusing on the role of stem cells, growth factors, scaffolds, and bioactive materials. In particular, stem cells derived from dental pulp are critical to this process due to their ability to differentiate into odontoblast-like cells and promote dentin production. The combination of these stem cells with bioactive scaffolds that release growth factors can significantly enhance the healing of pulp tissue. Furthermore, innovative materials, such as calcium silicate-based materials and bioactive glasses, have shown promising results in pulp regeneration and restorative dentin formation. While the future of these therapies is promising, challenges such as clinical application, long-term efficacy, and cost-effectiveness remain. As research advances, the importance of interdisciplinary collaboration and clinical trials will grow in overcoming these barriers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in experimental medicine and biology
Advances in experimental medicine and biology 医学-医学:研究与实验
CiteScore
5.90
自引率
0.00%
发文量
465
审稿时长
2-4 weeks
期刊介绍: Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信