探索ADHD的综合肠脑代谢模型。

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ezgi Tas, Kutlu O Ulgen
{"title":"探索ADHD的综合肠脑代谢模型。","authors":"Ezgi Tas, Kutlu O Ulgen","doi":"10.1007/s10528-025-11234-9","DOIUrl":null,"url":null,"abstract":"<p><p>Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition marked by hyperactivity, impulsivity, and inattentiveness that are disproportionate to the patient's developmental stage. Individuals with ADHD often experience gastrointestinal (GI) issues, indicating a potential link with the gut microbiome. This study aims to explore how various parameters influence the production and consumption of metabolites in the brain by developing an integrated gut-brain metabolic model, examining the impact of gut microbiota-derived metabolites on the human brain. Genome-scale metabolic models (GEMs), which consider gene-protein-reaction relationships, are utilized to simulate metabolic processes in gut microorganisms. A comprehensive genome-scale metabolic model of the human brain, comprising 812 metabolites, 994 reactions, 671 genes, and 71 metabolic pathways, serves as the healthy brain reference. To mimic an ADHD brain, the gene NOS1 is removed from the healthy model. An integrated gut-brain model is created using a three-compartment approach (gut, blood, and brain). This modeling technique, which accounts for microbial genome-environment interactions and their metabolite interactions with other human organs, helps identify the GI mechanisms underlying ADHD toward enhancing the quality of life for affected individuals. Moreover, understanding the relationship between ADHD, age, gender, and diet can help in developing more effective, personalized approaches to managing ADHD.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Integrated Gut-Brain Metabolic Model for ADHD.\",\"authors\":\"Ezgi Tas, Kutlu O Ulgen\",\"doi\":\"10.1007/s10528-025-11234-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition marked by hyperactivity, impulsivity, and inattentiveness that are disproportionate to the patient's developmental stage. Individuals with ADHD often experience gastrointestinal (GI) issues, indicating a potential link with the gut microbiome. This study aims to explore how various parameters influence the production and consumption of metabolites in the brain by developing an integrated gut-brain metabolic model, examining the impact of gut microbiota-derived metabolites on the human brain. Genome-scale metabolic models (GEMs), which consider gene-protein-reaction relationships, are utilized to simulate metabolic processes in gut microorganisms. A comprehensive genome-scale metabolic model of the human brain, comprising 812 metabolites, 994 reactions, 671 genes, and 71 metabolic pathways, serves as the healthy brain reference. To mimic an ADHD brain, the gene NOS1 is removed from the healthy model. An integrated gut-brain model is created using a three-compartment approach (gut, blood, and brain). This modeling technique, which accounts for microbial genome-environment interactions and their metabolite interactions with other human organs, helps identify the GI mechanisms underlying ADHD toward enhancing the quality of life for affected individuals. Moreover, understanding the relationship between ADHD, age, gender, and diet can help in developing more effective, personalized approaches to managing ADHD.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-025-11234-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11234-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

注意缺陷多动障碍(ADHD)是一种以多动、冲动和注意力不集中为特征的神经发育疾病,与患者的发育阶段不成比例。患有多动症的人经常会出现胃肠道(GI)问题,这表明与肠道微生物群有潜在的联系。本研究旨在通过建立一个集成的肠-脑代谢模型,研究肠道微生物衍生代谢物对人脑的影响,探讨各种参数如何影响大脑代谢物的产生和消耗。基因组尺度代谢模型(GEMs)考虑了基因-蛋白质-反应关系,用于模拟肠道微生物的代谢过程。一个全面的人脑基因组尺度代谢模型,包括812种代谢物、994种反应、671种基因和71种代谢途径,可作为健康大脑的参考。为了模拟多动症大脑,从健康模型中去除NOS1基因。使用三室方法(肠道,血液和大脑)创建了一个集成的肠-脑模型。这种建模技术解释了微生物基因组与环境的相互作用以及它们的代谢物与其他人体器官的相互作用,有助于确定ADHD潜在的胃肠道机制,从而提高受影响个体的生活质量。此外,了解ADHD与年龄、性别和饮食之间的关系有助于开发更有效、个性化的方法来管理ADHD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Integrated Gut-Brain Metabolic Model for ADHD.

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition marked by hyperactivity, impulsivity, and inattentiveness that are disproportionate to the patient's developmental stage. Individuals with ADHD often experience gastrointestinal (GI) issues, indicating a potential link with the gut microbiome. This study aims to explore how various parameters influence the production and consumption of metabolites in the brain by developing an integrated gut-brain metabolic model, examining the impact of gut microbiota-derived metabolites on the human brain. Genome-scale metabolic models (GEMs), which consider gene-protein-reaction relationships, are utilized to simulate metabolic processes in gut microorganisms. A comprehensive genome-scale metabolic model of the human brain, comprising 812 metabolites, 994 reactions, 671 genes, and 71 metabolic pathways, serves as the healthy brain reference. To mimic an ADHD brain, the gene NOS1 is removed from the healthy model. An integrated gut-brain model is created using a three-compartment approach (gut, blood, and brain). This modeling technique, which accounts for microbial genome-environment interactions and their metabolite interactions with other human organs, helps identify the GI mechanisms underlying ADHD toward enhancing the quality of life for affected individuals. Moreover, understanding the relationship between ADHD, age, gender, and diet can help in developing more effective, personalized approaches to managing ADHD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信