基于脂质体的CRISPR-Cas9在蜜蜂中的靶向基因编辑

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Berkant İsmail Yıldız, Kemal Karabağ
{"title":"基于脂质体的CRISPR-Cas9在蜜蜂中的靶向基因编辑","authors":"Berkant İsmail Yıldız, Kemal Karabağ","doi":"10.1007/s10528-025-11233-w","DOIUrl":null,"url":null,"abstract":"<p><p>Genome editing technologies have revolutionized molecular biology, enabling precise manipulation of gene functions across diverse organisms. In this study, we introduce a novel liposome-mediated delivery system for CRISPR-Cas9 components targeting the Juvenile Hormone Acid Methyltransferase (JHAMT) gene in honey bees (Apis mellifera anatoliaca). This approach leverages drone sperm cells as vectors for CRISPR-Cas9 transfection, overcoming the technical challenges of embryo microinjection in honey bees, such as low survival rates and labor-intensive procedures. The study involved artificial insemination of queen bees with transfected sperm and subsequent evaluation of gene-editing efficiency across generations.Our findings demonstrate the successful generation of both heterozygous and homozygous mutants, with gene-editing efficiencies reaching approximately 43%. This innovative method highlights the potential of liposome-mediated delivery systems for non-invasive, efficient, and scalable genome editing in eusocial insects. The results pave the way for broader applications in honey bee genetic research, offering a viable alternative to traditional methods. Furthermore, this study underscores the importance of genetic tools in advancing apiculture and addressing ecological challenges linked to pollinator health.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted Gene Editing in Honey Bees Using Liposome-Based CRISPR-Cas9.\",\"authors\":\"Berkant İsmail Yıldız, Kemal Karabağ\",\"doi\":\"10.1007/s10528-025-11233-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome editing technologies have revolutionized molecular biology, enabling precise manipulation of gene functions across diverse organisms. In this study, we introduce a novel liposome-mediated delivery system for CRISPR-Cas9 components targeting the Juvenile Hormone Acid Methyltransferase (JHAMT) gene in honey bees (Apis mellifera anatoliaca). This approach leverages drone sperm cells as vectors for CRISPR-Cas9 transfection, overcoming the technical challenges of embryo microinjection in honey bees, such as low survival rates and labor-intensive procedures. The study involved artificial insemination of queen bees with transfected sperm and subsequent evaluation of gene-editing efficiency across generations.Our findings demonstrate the successful generation of both heterozygous and homozygous mutants, with gene-editing efficiencies reaching approximately 43%. This innovative method highlights the potential of liposome-mediated delivery systems for non-invasive, efficient, and scalable genome editing in eusocial insects. The results pave the way for broader applications in honey bee genetic research, offering a viable alternative to traditional methods. Furthermore, this study underscores the importance of genetic tools in advancing apiculture and addressing ecological challenges linked to pollinator health.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-025-11233-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11233-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基因组编辑技术已经彻底改变了分子生物学,能够精确地操纵不同生物体的基因功能。在这项研究中,我们引入了一种新的脂质体介导的靶向蜜蜂幼代激素酸甲基转移酶(JHAMT)基因的CRISPR-Cas9组分递送系统。该方法利用雄蜂精子细胞作为CRISPR-Cas9转染的载体,克服了蜜蜂胚胎显微注射的技术挑战,如低存活率和劳动密集型程序。这项研究涉及用转染过的精子对蜂王进行人工授精,并随后评估跨代的基因编辑效率。我们的研究结果表明,杂合和纯合突变体的成功产生,基因编辑效率达到约43%。这种创新的方法突出了脂质体介导的传递系统在非侵入性、高效和可扩展的社会性昆虫基因组编辑中的潜力。这一结果为蜜蜂基因研究的更广泛应用铺平了道路,为传统方法提供了一种可行的替代方法。此外,这项研究强调了遗传工具在推进养蜂和解决与传粉媒介健康相关的生态挑战方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeted Gene Editing in Honey Bees Using Liposome-Based CRISPR-Cas9.

Genome editing technologies have revolutionized molecular biology, enabling precise manipulation of gene functions across diverse organisms. In this study, we introduce a novel liposome-mediated delivery system for CRISPR-Cas9 components targeting the Juvenile Hormone Acid Methyltransferase (JHAMT) gene in honey bees (Apis mellifera anatoliaca). This approach leverages drone sperm cells as vectors for CRISPR-Cas9 transfection, overcoming the technical challenges of embryo microinjection in honey bees, such as low survival rates and labor-intensive procedures. The study involved artificial insemination of queen bees with transfected sperm and subsequent evaluation of gene-editing efficiency across generations.Our findings demonstrate the successful generation of both heterozygous and homozygous mutants, with gene-editing efficiencies reaching approximately 43%. This innovative method highlights the potential of liposome-mediated delivery systems for non-invasive, efficient, and scalable genome editing in eusocial insects. The results pave the way for broader applications in honey bee genetic research, offering a viable alternative to traditional methods. Furthermore, this study underscores the importance of genetic tools in advancing apiculture and addressing ecological challenges linked to pollinator health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信