{"title":"大分子和纳米颗粒在稀溶液中的流体动力学性质:古典和现代概念的简要介绍。","authors":"José García de la Torre, José G Hernández-Cifre","doi":"10.1007/s00249-025-01791-7","DOIUrl":null,"url":null,"abstract":"<p><p>The theory, computational modelling and data analysis of hydrodynamic and other solution properties of macromolecules and nanoparticles in dilute solution are nowadays well-established. Along this essay, we briefly present the variety of methods which are currently available for those purposes. Although such methods embody an important complexity, they are usually presented as user-friendly tools which can be used without previous knowledge of their foundations. Some understanding of classical concepts in which modern tools are based can result in a better, more profitable, use of them and a most adequate form of presenting and discussing their results. We describe the utility of employing a systematic way of handling data and results for the solution properties in terms of equivalent radii, which indeed provide an alternative to the raw properties in their use for structural determinations. They can also be employed in the design of simulation of experiments and data analysis procedures, like in analytical ultracentrifugation as we propose finally in this paper.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic properties of macromolecules and nanoparticles in dilute solution: a brief essay on classical and modern concepts.\",\"authors\":\"José García de la Torre, José G Hernández-Cifre\",\"doi\":\"10.1007/s00249-025-01791-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The theory, computational modelling and data analysis of hydrodynamic and other solution properties of macromolecules and nanoparticles in dilute solution are nowadays well-established. Along this essay, we briefly present the variety of methods which are currently available for those purposes. Although such methods embody an important complexity, they are usually presented as user-friendly tools which can be used without previous knowledge of their foundations. Some understanding of classical concepts in which modern tools are based can result in a better, more profitable, use of them and a most adequate form of presenting and discussing their results. We describe the utility of employing a systematic way of handling data and results for the solution properties in terms of equivalent radii, which indeed provide an alternative to the raw properties in their use for structural determinations. They can also be employed in the design of simulation of experiments and data analysis procedures, like in analytical ultracentrifugation as we propose finally in this paper.</p>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1007/s00249-025-01791-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01791-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Hydrodynamic properties of macromolecules and nanoparticles in dilute solution: a brief essay on classical and modern concepts.
The theory, computational modelling and data analysis of hydrodynamic and other solution properties of macromolecules and nanoparticles in dilute solution are nowadays well-established. Along this essay, we briefly present the variety of methods which are currently available for those purposes. Although such methods embody an important complexity, they are usually presented as user-friendly tools which can be used without previous knowledge of their foundations. Some understanding of classical concepts in which modern tools are based can result in a better, more profitable, use of them and a most adequate form of presenting and discussing their results. We describe the utility of employing a systematic way of handling data and results for the solution properties in terms of equivalent radii, which indeed provide an alternative to the raw properties in their use for structural determinations. They can also be employed in the design of simulation of experiments and data analysis procedures, like in analytical ultracentrifugation as we propose finally in this paper.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.