大分子和纳米颗粒在稀溶液中的流体动力学性质:古典和现代概念的简要介绍。

IF 2.4 4区 生物学 Q3 BIOPHYSICS
José García de la Torre, José G Hernández-Cifre
{"title":"大分子和纳米颗粒在稀溶液中的流体动力学性质:古典和现代概念的简要介绍。","authors":"José García de la Torre, José G Hernández-Cifre","doi":"10.1007/s00249-025-01791-7","DOIUrl":null,"url":null,"abstract":"<p><p>The theory, computational modelling and data analysis of hydrodynamic and other solution properties of macromolecules and nanoparticles in dilute solution are nowadays well-established. Along this essay, we briefly present the variety of methods which are currently available for those purposes. Although such methods embody an important complexity, they are usually presented as user-friendly tools which can be used without previous knowledge of their foundations. Some understanding of classical concepts in which modern tools are based can result in a better, more profitable, use of them and a most adequate form of presenting and discussing their results. We describe the utility of employing a systematic way of handling data and results for the solution properties in terms of equivalent radii, which indeed provide an alternative to the raw properties in their use for structural determinations. They can also be employed in the design of simulation of experiments and data analysis procedures, like in analytical ultracentrifugation as we propose finally in this paper.</p>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamic properties of macromolecules and nanoparticles in dilute solution: a brief essay on classical and modern concepts.\",\"authors\":\"José García de la Torre, José G Hernández-Cifre\",\"doi\":\"10.1007/s00249-025-01791-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The theory, computational modelling and data analysis of hydrodynamic and other solution properties of macromolecules and nanoparticles in dilute solution are nowadays well-established. Along this essay, we briefly present the variety of methods which are currently available for those purposes. Although such methods embody an important complexity, they are usually presented as user-friendly tools which can be used without previous knowledge of their foundations. Some understanding of classical concepts in which modern tools are based can result in a better, more profitable, use of them and a most adequate form of presenting and discussing their results. We describe the utility of employing a systematic way of handling data and results for the solution properties in terms of equivalent radii, which indeed provide an alternative to the raw properties in their use for structural determinations. They can also be employed in the design of simulation of experiments and data analysis procedures, like in analytical ultracentrifugation as we propose finally in this paper.</p>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1007/s00249-025-01791-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1007/s00249-025-01791-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

目前,大分子和纳米粒子在稀溶液中的流体力学和其他溶液性质的理论、计算模型和数据分析已经建立。在这篇文章中,我们简要介绍了目前可用于这些目的的各种方法。虽然这些方法体现了重要的复杂性,但它们通常是用户友好的工具,可以在没有事先了解其基础的情况下使用。对现代工具所基于的经典概念的一些理解可以导致更好、更有利地使用它们,并以最适当的形式呈现和讨论它们的结果。我们描述了采用一种系统的方法来处理数据和结果的解决方案属性的等效半径方面的效用,这确实提供了一种替代的原始属性在其用于结构确定。它们也可以用于实验模拟和数据分析程序的设计,例如我们在本文最后提出的分析性超离心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrodynamic properties of macromolecules and nanoparticles in dilute solution: a brief essay on classical and modern concepts.

The theory, computational modelling and data analysis of hydrodynamic and other solution properties of macromolecules and nanoparticles in dilute solution are nowadays well-established. Along this essay, we briefly present the variety of methods which are currently available for those purposes. Although such methods embody an important complexity, they are usually presented as user-friendly tools which can be used without previous knowledge of their foundations. Some understanding of classical concepts in which modern tools are based can result in a better, more profitable, use of them and a most adequate form of presenting and discussing their results. We describe the utility of employing a systematic way of handling data and results for the solution properties in terms of equivalent radii, which indeed provide an alternative to the raw properties in their use for structural determinations. They can also be employed in the design of simulation of experiments and data analysis procedures, like in analytical ultracentrifugation as we propose finally in this paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信