乙型肝炎病毒衣壳组装调节剂的计算研究进展。

IF 7.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Ke Liu , Shaoqing Du , Weiqiao Deng , Zongjin Qu , Xueping Hu
{"title":"乙型肝炎病毒衣壳组装调节剂的计算研究进展。","authors":"Ke Liu ,&nbsp;Shaoqing Du ,&nbsp;Weiqiao Deng ,&nbsp;Zongjin Qu ,&nbsp;Xueping Hu","doi":"10.1016/j.drudis.2025.104458","DOIUrl":null,"url":null,"abstract":"<div><div>The capsid protein (Cp) of hepatitis B virus (HBV) is crucial for the nucleocapsid formation, viral DNA replication, and virus–host cell interactions necessary for HBV persistence. Capsid assembly modulators (CAMs) target Cp dimer–dimer interactions, thereby inhibiting the reverse transcription of pregenomic RNA and the synthesis of relaxed circular DNA, leading to a reduction in covalently closed circular DNA amplification. This review highlights the use of molecular docking, quantitative structure–activity relationship (QSAR), and machine learning-based QSAR models, and molecular dynamics simulations, in CAM discovery and optimization. We aim to provide strategies for CAM discovery, optimization, and clinical translation from a computer-aided drug design perspective, thereby contributing to efforts toward a functional cure for HBV.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"30 10","pages":"Article 104458"},"PeriodicalIF":7.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in the computational development of hepatitis B virus capsid assembly modulators\",\"authors\":\"Ke Liu ,&nbsp;Shaoqing Du ,&nbsp;Weiqiao Deng ,&nbsp;Zongjin Qu ,&nbsp;Xueping Hu\",\"doi\":\"10.1016/j.drudis.2025.104458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The capsid protein (Cp) of hepatitis B virus (HBV) is crucial for the nucleocapsid formation, viral DNA replication, and virus–host cell interactions necessary for HBV persistence. Capsid assembly modulators (CAMs) target Cp dimer–dimer interactions, thereby inhibiting the reverse transcription of pregenomic RNA and the synthesis of relaxed circular DNA, leading to a reduction in covalently closed circular DNA amplification. This review highlights the use of molecular docking, quantitative structure–activity relationship (QSAR), and machine learning-based QSAR models, and molecular dynamics simulations, in CAM discovery and optimization. We aim to provide strategies for CAM discovery, optimization, and clinical translation from a computer-aided drug design perspective, thereby contributing to efforts toward a functional cure for HBV.</div></div>\",\"PeriodicalId\":301,\"journal\":{\"name\":\"Drug Discovery Today\",\"volume\":\"30 10\",\"pages\":\"Article 104458\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359644625001710\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644625001710","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

乙型肝炎病毒(HBV)的衣壳蛋白(Cp)对核衣壳形成、病毒DNA复制和病毒与宿主细胞相互作用至关重要。衣壳组装调节剂(CAMs)靶向Cp二聚体-二聚体相互作用,从而抑制基因组前RNA的逆转录和松弛环状DNA的合成,导致共价闭合环状DNA扩增的减少。本文重点介绍了分子对接、定量构效关系(QSAR)、基于机器学习的QSAR模型和分子动力学模拟在CAM发现和优化中的应用。我们的目标是从计算机辅助药物设计的角度为CAM的发现、优化和临床翻译提供策略,从而为HBV的功能性治愈做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in the computational development of hepatitis B virus capsid assembly modulators
The capsid protein (Cp) of hepatitis B virus (HBV) is crucial for the nucleocapsid formation, viral DNA replication, and virus–host cell interactions necessary for HBV persistence. Capsid assembly modulators (CAMs) target Cp dimer–dimer interactions, thereby inhibiting the reverse transcription of pregenomic RNA and the synthesis of relaxed circular DNA, leading to a reduction in covalently closed circular DNA amplification. This review highlights the use of molecular docking, quantitative structure–activity relationship (QSAR), and machine learning-based QSAR models, and molecular dynamics simulations, in CAM discovery and optimization. We aim to provide strategies for CAM discovery, optimization, and clinical translation from a computer-aided drug design perspective, thereby contributing to efforts toward a functional cure for HBV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信