Xiang-Lei Chang, Yi Dan Zheng, Nan Wang, Xin-Ru Zhang, Yin Qiang, Wei-Feng Wang, Jun-Li Yang
{"title":"海藻酸钠启动MOF缺陷结构快速构建高疼痛样纳米酶用于神经保护。","authors":"Xiang-Lei Chang, Yi Dan Zheng, Nan Wang, Xin-Ru Zhang, Yin Qiang, Wei-Feng Wang, Jun-Li Yang","doi":"10.1002/smtd.202501470","DOIUrl":null,"url":null,"abstract":"<p><p>Organophosphorus (OP) nerve agents cause neurotoxicity through irreversible inhibition of acetylcholinesterase (AChE), while conventional therapeutic strategies are inadequate to fully restore cholinergic function. Artificial enzymes with AChE-like activity are urgently needed to provide sustainable catalytic capacity to address this limitation. Guided by the acid-base synergistic catalytic mechanism of the ester hydrolysis reaction, the 29-ZIF-8/SA composite with excellent AChE-like activity is successfully constructed by a defect engineering strategy with sodium alginate (SA) as a modulator. The mechanistic studies demonstrate that the basic site -OH groups introduced by SA, combined with the Lewis acid sites Zn<sup>2+</sup> of ZIF-8, acted synergistically to form a bifunctional catalytic active site that enhances hydrolytic activity. Meanwhile, SA mediates the rapid formation of mesoporous architectures, improving substrate accessibility and mass transfer efficiency. In addition, 29-ZIF-8/SA demonstrates excellent environmental stability under harsh conditions and resists the inhibitory effect of methyl parathion (MP) on AChE activity. In vitro and in vivo experiments show that the 29-ZIF-8/SA composite exhibits cytoprotective properties to effectively attenuate MP-induced neurotoxicity. This work not only presents a designable method for the construction of highly active hydrolases, which are rarely reported, but also offers a new approach for nanozymes-based treatment of acute OP poisoning.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01470"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium Alginate Launches MOF Defective Structures to Rapidly Construct Highly AChE-Like Nanozyme for Neuroprotection.\",\"authors\":\"Xiang-Lei Chang, Yi Dan Zheng, Nan Wang, Xin-Ru Zhang, Yin Qiang, Wei-Feng Wang, Jun-Li Yang\",\"doi\":\"10.1002/smtd.202501470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organophosphorus (OP) nerve agents cause neurotoxicity through irreversible inhibition of acetylcholinesterase (AChE), while conventional therapeutic strategies are inadequate to fully restore cholinergic function. Artificial enzymes with AChE-like activity are urgently needed to provide sustainable catalytic capacity to address this limitation. Guided by the acid-base synergistic catalytic mechanism of the ester hydrolysis reaction, the 29-ZIF-8/SA composite with excellent AChE-like activity is successfully constructed by a defect engineering strategy with sodium alginate (SA) as a modulator. The mechanistic studies demonstrate that the basic site -OH groups introduced by SA, combined with the Lewis acid sites Zn<sup>2+</sup> of ZIF-8, acted synergistically to form a bifunctional catalytic active site that enhances hydrolytic activity. Meanwhile, SA mediates the rapid formation of mesoporous architectures, improving substrate accessibility and mass transfer efficiency. In addition, 29-ZIF-8/SA demonstrates excellent environmental stability under harsh conditions and resists the inhibitory effect of methyl parathion (MP) on AChE activity. In vitro and in vivo experiments show that the 29-ZIF-8/SA composite exhibits cytoprotective properties to effectively attenuate MP-induced neurotoxicity. This work not only presents a designable method for the construction of highly active hydrolases, which are rarely reported, but also offers a new approach for nanozymes-based treatment of acute OP poisoning.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01470\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501470\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501470","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Sodium Alginate Launches MOF Defective Structures to Rapidly Construct Highly AChE-Like Nanozyme for Neuroprotection.
Organophosphorus (OP) nerve agents cause neurotoxicity through irreversible inhibition of acetylcholinesterase (AChE), while conventional therapeutic strategies are inadequate to fully restore cholinergic function. Artificial enzymes with AChE-like activity are urgently needed to provide sustainable catalytic capacity to address this limitation. Guided by the acid-base synergistic catalytic mechanism of the ester hydrolysis reaction, the 29-ZIF-8/SA composite with excellent AChE-like activity is successfully constructed by a defect engineering strategy with sodium alginate (SA) as a modulator. The mechanistic studies demonstrate that the basic site -OH groups introduced by SA, combined with the Lewis acid sites Zn2+ of ZIF-8, acted synergistically to form a bifunctional catalytic active site that enhances hydrolytic activity. Meanwhile, SA mediates the rapid formation of mesoporous architectures, improving substrate accessibility and mass transfer efficiency. In addition, 29-ZIF-8/SA demonstrates excellent environmental stability under harsh conditions and resists the inhibitory effect of methyl parathion (MP) on AChE activity. In vitro and in vivo experiments show that the 29-ZIF-8/SA composite exhibits cytoprotective properties to effectively attenuate MP-induced neurotoxicity. This work not only presents a designable method for the construction of highly active hydrolases, which are rarely reported, but also offers a new approach for nanozymes-based treatment of acute OP poisoning.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.