利用再生贻贝衍生纳米羟基磷灰石引导牙周再生的纳米纤维支架的研制与表征。

IF 6.3 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Andressa da Silva Barboza, Adriana Poli Castilho Dugaich, Andressa Baptista Nörnberg, Stephen Christina de Moraes, Marcia Adriana Tomaz Santana, Daiara Floriano da Silva, Carlos Eduardo Maduro de Campos, Rafael Guerra Lund, Juliana Silva Ribeiro de Andrade
{"title":"利用再生贻贝衍生纳米羟基磷灰石引导牙周再生的纳米纤维支架的研制与表征。","authors":"Andressa da Silva Barboza, Adriana Poli Castilho Dugaich, Andressa Baptista Nörnberg, Stephen Christina de Moraes, Marcia Adriana Tomaz Santana, Daiara Floriano da Silva, Carlos Eduardo Maduro de Campos, Rafael Guerra Lund, Juliana Silva Ribeiro de Andrade","doi":"10.1016/j.dental.2025.08.012","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to develop and characterize biodegradable nanofibrous scaffolds composed of poly(L-co-D,L-lactic acid) (PLDLA), nano-hydroxyapatite (nHA) synthesized from recycled mussel shells, and nanoemulsified chlorhexidine (nCHX) for guided periodontal regeneration (GPR).</p><p><strong>Methods: </strong>nHA was synthesized from Perna perna mussel shells via wet chemical precipitation and characterized by SEM, FTIR, XRD, Raman, TGA, and zeta potential. Electrospun PLDLA/polycaprolactone (PCL) scaffolds were functionalized with nHA and/or nCHX. Six experimental groups were evaluated: G1 (PLDLA/PCL 60:40 control), G2 (PLDLA/PCL+1.0 %nHA), G3 (PLDLA/PCL+0.5 %nHA), G4 (PLDLA/PCL+1.0 %nHA+0.12 %nCHX), G5 (PLDLA/PCL+0.5 %nHA +0.12 %nCHX), and G6 (PLDLA/PCL+0.12 %nCHX). Scaffolds were evaluated for morphology, chemical composition, hydrophilicity, degradation, calcium release, antimicrobial activity (against S. aureus, E. faecalis, S. mutans, and C. albicans), cytocompatibility using SHED and HGF cells, and osteogenic potential via Alizarin Red S staining. Statistical analysis was performed using one-way ANOVA and Tukey's test (p < 0.05).</p><p><strong>Results: </strong>nHA displayed a nanostructured, porous morphology, with confirmed phase transformation from CaCO₃ to hydroxyapatite. Scaffolds exhibited uniform, interconnected nanofibers (∼600 nm), hydrophilic surfaces (40-60° contact angle), and moderate roughness (Ra 0.5-1.2 µm). nHA significantly enhanced osteogenic differentiation, with a 2-fold increase in mineral deposition (p < 0.05). nCHX-loaded scaffolds showed strong antimicrobial activity (16-20 mm inhibition zones; 3-log bacterial reduction) and retained > 80 % cell viability. Degradation reached ∼20 % over 21 days.</p><p><strong>Significance: </strong>This study presents an eco-friendly approach to develop multifunctional nanofibrous scaffolds using marine waste as a sustainable source of bioactive hydroxyapatite. The combination of biodegradable polymers, biogenic nHA, and nanoemulsified CHX resulted in scaffolds that integrate biocompatibility, antimicrobial protection, and osteoinductive activity. These findings highlight the potential of green nanomaterials in periodontal tissue engineering and provide a promising alternative to current regenerative therapies.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of nanofibrous scaffolds for guided periodontal regeneration using recycled mussel shell-derived nano-hydroxyapatite.\",\"authors\":\"Andressa da Silva Barboza, Adriana Poli Castilho Dugaich, Andressa Baptista Nörnberg, Stephen Christina de Moraes, Marcia Adriana Tomaz Santana, Daiara Floriano da Silva, Carlos Eduardo Maduro de Campos, Rafael Guerra Lund, Juliana Silva Ribeiro de Andrade\",\"doi\":\"10.1016/j.dental.2025.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aimed to develop and characterize biodegradable nanofibrous scaffolds composed of poly(L-co-D,L-lactic acid) (PLDLA), nano-hydroxyapatite (nHA) synthesized from recycled mussel shells, and nanoemulsified chlorhexidine (nCHX) for guided periodontal regeneration (GPR).</p><p><strong>Methods: </strong>nHA was synthesized from Perna perna mussel shells via wet chemical precipitation and characterized by SEM, FTIR, XRD, Raman, TGA, and zeta potential. Electrospun PLDLA/polycaprolactone (PCL) scaffolds were functionalized with nHA and/or nCHX. Six experimental groups were evaluated: G1 (PLDLA/PCL 60:40 control), G2 (PLDLA/PCL+1.0 %nHA), G3 (PLDLA/PCL+0.5 %nHA), G4 (PLDLA/PCL+1.0 %nHA+0.12 %nCHX), G5 (PLDLA/PCL+0.5 %nHA +0.12 %nCHX), and G6 (PLDLA/PCL+0.12 %nCHX). Scaffolds were evaluated for morphology, chemical composition, hydrophilicity, degradation, calcium release, antimicrobial activity (against S. aureus, E. faecalis, S. mutans, and C. albicans), cytocompatibility using SHED and HGF cells, and osteogenic potential via Alizarin Red S staining. Statistical analysis was performed using one-way ANOVA and Tukey's test (p < 0.05).</p><p><strong>Results: </strong>nHA displayed a nanostructured, porous morphology, with confirmed phase transformation from CaCO₃ to hydroxyapatite. Scaffolds exhibited uniform, interconnected nanofibers (∼600 nm), hydrophilic surfaces (40-60° contact angle), and moderate roughness (Ra 0.5-1.2 µm). nHA significantly enhanced osteogenic differentiation, with a 2-fold increase in mineral deposition (p < 0.05). nCHX-loaded scaffolds showed strong antimicrobial activity (16-20 mm inhibition zones; 3-log bacterial reduction) and retained > 80 % cell viability. Degradation reached ∼20 % over 21 days.</p><p><strong>Significance: </strong>This study presents an eco-friendly approach to develop multifunctional nanofibrous scaffolds using marine waste as a sustainable source of bioactive hydroxyapatite. The combination of biodegradable polymers, biogenic nHA, and nanoemulsified CHX resulted in scaffolds that integrate biocompatibility, antimicrobial protection, and osteoinductive activity. These findings highlight the potential of green nanomaterials in periodontal tissue engineering and provide a promising alternative to current regenerative therapies.</p>\",\"PeriodicalId\":298,\"journal\":{\"name\":\"Dental Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dental.2025.08.012\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2025.08.012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:研究由聚(L-co-D, l -乳酸)(PLDLA)、回收贻贝合成的纳米羟基磷灰石(nHA)和纳米乳化氯己定(nCHX)组成的可生物降解纳米纤维支架用于牙周引导再生(GPR)。方法:以贻贝为原料,采用湿法化学沉淀法合成nHA,并采用SEM、FTIR、XRD、Raman、TGA、zeta电位等手段对其进行表征。电纺丝PLDLA/聚己内酯(PCL)支架用nHA和/或nCHX功能化。分为6个实验组:G1 (PLDLA/PCL 60:40对照)、G2 (PLDLA/PCL+1.0 %nHA)、G3 (PLDLA/PCL+0.5 %nHA)、G4 (PLDLA/PCL+1.0 %nHA+0.12 %nCHX)、G5 (PLDLA/PCL+0.5 %nHA +0.12 %nCHX)、G6 (PLDLA/PCL+0.12 %nCHX)。支架的形态、化学成分、亲水性、降解、钙释放、抗菌活性(对金黄色葡萄球菌、粪球菌、变形葡萄球菌和白色念珠菌)、细胞相容性(SHED和HGF)以及成骨潜能(茜素红S染色)进行了评估。使用单因素方差分析和Tukey检验(p )进行统计分析。结果:nHA显示出纳米结构的多孔形态,证实了从CaCO₃到羟基磷灰石的相变。支架具有均匀、相互连接的纳米纤维(~ 600 nm)、亲水性表面(40-60°接触角)和中等粗糙度(Ra 0.5-1.2 µm)。nHA显著增强成骨分化,矿物沉积增加2倍(p  80 %细胞活力)。在21天内降解达到了~ 20 %。意义:本研究提出了一种利用海洋废物作为生物活性羟基磷灰石的可持续来源开发多功能纳米纤维支架的环保方法。生物可降解聚合物、生物原性nHA和纳米乳化CHX的结合产生了集生物相容性、抗菌保护和骨诱导活性为一体的支架。这些发现突出了绿色纳米材料在牙周组织工程中的潜力,并为目前的再生治疗提供了一个有希望的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and characterization of nanofibrous scaffolds for guided periodontal regeneration using recycled mussel shell-derived nano-hydroxyapatite.

Objective: This study aimed to develop and characterize biodegradable nanofibrous scaffolds composed of poly(L-co-D,L-lactic acid) (PLDLA), nano-hydroxyapatite (nHA) synthesized from recycled mussel shells, and nanoemulsified chlorhexidine (nCHX) for guided periodontal regeneration (GPR).

Methods: nHA was synthesized from Perna perna mussel shells via wet chemical precipitation and characterized by SEM, FTIR, XRD, Raman, TGA, and zeta potential. Electrospun PLDLA/polycaprolactone (PCL) scaffolds were functionalized with nHA and/or nCHX. Six experimental groups were evaluated: G1 (PLDLA/PCL 60:40 control), G2 (PLDLA/PCL+1.0 %nHA), G3 (PLDLA/PCL+0.5 %nHA), G4 (PLDLA/PCL+1.0 %nHA+0.12 %nCHX), G5 (PLDLA/PCL+0.5 %nHA +0.12 %nCHX), and G6 (PLDLA/PCL+0.12 %nCHX). Scaffolds were evaluated for morphology, chemical composition, hydrophilicity, degradation, calcium release, antimicrobial activity (against S. aureus, E. faecalis, S. mutans, and C. albicans), cytocompatibility using SHED and HGF cells, and osteogenic potential via Alizarin Red S staining. Statistical analysis was performed using one-way ANOVA and Tukey's test (p < 0.05).

Results: nHA displayed a nanostructured, porous morphology, with confirmed phase transformation from CaCO₃ to hydroxyapatite. Scaffolds exhibited uniform, interconnected nanofibers (∼600 nm), hydrophilic surfaces (40-60° contact angle), and moderate roughness (Ra 0.5-1.2 µm). nHA significantly enhanced osteogenic differentiation, with a 2-fold increase in mineral deposition (p < 0.05). nCHX-loaded scaffolds showed strong antimicrobial activity (16-20 mm inhibition zones; 3-log bacterial reduction) and retained > 80 % cell viability. Degradation reached ∼20 % over 21 days.

Significance: This study presents an eco-friendly approach to develop multifunctional nanofibrous scaffolds using marine waste as a sustainable source of bioactive hydroxyapatite. The combination of biodegradable polymers, biogenic nHA, and nanoemulsified CHX resulted in scaffolds that integrate biocompatibility, antimicrobial protection, and osteoinductive activity. These findings highlight the potential of green nanomaterials in periodontal tissue engineering and provide a promising alternative to current regenerative therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dental Materials
Dental Materials 工程技术-材料科学:生物材料
CiteScore
9.80
自引率
10.00%
发文量
290
审稿时长
67 days
期刊介绍: Dental Materials publishes original research, review articles, and short communications. Academy of Dental Materials members click here to register for free access to Dental Materials online. The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology. Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信