Young Chan Kim, Pranav Kulkarni, Sun-Sik Kim, Hee-Jun Kim, Hyun Young Jung
{"title":"稳定无阳极锂硫电池的混合界面调制:引导锂成核和多硫化物调节。","authors":"Young Chan Kim, Pranav Kulkarni, Sun-Sik Kim, Hee-Jun Kim, Hyun Young Jung","doi":"10.1002/smtd.202501183","DOIUrl":null,"url":null,"abstract":"<p><p>Anode-less lithium-sulfur (Li-S) batteries offer a promising route to high energy density and cost-effective energy storage, yet suffer from unstable Li deposition and polysulfide crossover at the current collector interface. Here, we introduce a hybrid interfacial modulation layer (HIML) designed to simultaneously regulate dendrite-free Li deposition behavior and block polysulfide migration. The HIML consists of lithiophilic Au nano seeds coated with a porous ionic-selective overlayer, enabling guided, uniform Li nucleation and selective Li<sup>+</sup> transport. When applied to an anode-less Li-S full cell with a Li<sub>2</sub>S cathode, the HIML-enabled current collector achieves an initial charge capacity of 1272 mAh g<sup>-1</sup>, a Coulombic efficiency of 95.7%, and a low polarization of 0.14 V. The HIML-introduced full cell exposes a high energy density of 389 Wh kg<sup>-1</sup>, indicating a notably higher value among the reported Li<sub>2</sub>S-based Li metal batteries. These findings demonstrate that HIML offers a robust and scalable strategy for stabilizing Li plating interfaces, paving the way toward practical, high-performance anode-less Li-S batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01183"},"PeriodicalIF":9.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Interfacial Modulation for Stabilizing Anode-Less Lithium-Sulfur Batteries: Guided Lithium Nucleation and Polysulfide Regulation.\",\"authors\":\"Young Chan Kim, Pranav Kulkarni, Sun-Sik Kim, Hee-Jun Kim, Hyun Young Jung\",\"doi\":\"10.1002/smtd.202501183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anode-less lithium-sulfur (Li-S) batteries offer a promising route to high energy density and cost-effective energy storage, yet suffer from unstable Li deposition and polysulfide crossover at the current collector interface. Here, we introduce a hybrid interfacial modulation layer (HIML) designed to simultaneously regulate dendrite-free Li deposition behavior and block polysulfide migration. The HIML consists of lithiophilic Au nano seeds coated with a porous ionic-selective overlayer, enabling guided, uniform Li nucleation and selective Li<sup>+</sup> transport. When applied to an anode-less Li-S full cell with a Li<sub>2</sub>S cathode, the HIML-enabled current collector achieves an initial charge capacity of 1272 mAh g<sup>-1</sup>, a Coulombic efficiency of 95.7%, and a low polarization of 0.14 V. The HIML-introduced full cell exposes a high energy density of 389 Wh kg<sup>-1</sup>, indicating a notably higher value among the reported Li<sub>2</sub>S-based Li metal batteries. These findings demonstrate that HIML offers a robust and scalable strategy for stabilizing Li plating interfaces, paving the way toward practical, high-performance anode-less Li-S batteries.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01183\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501183\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501183","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
无阳极锂硫(Li- s)电池为实现高能量密度和经济高效的储能提供了一条有前途的途径,但在电流集电极界面处存在不稳定的锂沉积和多硫化物交叉。在这里,我们引入了一种混合界面调制层(HIML),旨在同时调节无枝晶Li沉积行为和阻止多硫化物迁移。HIML由包裹有多孔离子选择性覆盖层的亲锂金纳米种子组成,可实现定向、均匀的Li成核和选择性Li+传输。当应用于具有Li2S阴极的无阳极Li-S充满电池时,himl使能的电流收集器实现了1272 mAh g-1的初始充电容量,95.7%的库仑效率和0.14 V的低极化。himl引入的全电池暴露出389 Wh kg-1的高能量密度,在报道的li2s基锂金属电池中显着更高。这些发现表明,HIML为稳定锂电镀界面提供了一种强大且可扩展的策略,为实用的高性能无阳极锂电池铺平了道路。
Hybrid Interfacial Modulation for Stabilizing Anode-Less Lithium-Sulfur Batteries: Guided Lithium Nucleation and Polysulfide Regulation.
Anode-less lithium-sulfur (Li-S) batteries offer a promising route to high energy density and cost-effective energy storage, yet suffer from unstable Li deposition and polysulfide crossover at the current collector interface. Here, we introduce a hybrid interfacial modulation layer (HIML) designed to simultaneously regulate dendrite-free Li deposition behavior and block polysulfide migration. The HIML consists of lithiophilic Au nano seeds coated with a porous ionic-selective overlayer, enabling guided, uniform Li nucleation and selective Li+ transport. When applied to an anode-less Li-S full cell with a Li2S cathode, the HIML-enabled current collector achieves an initial charge capacity of 1272 mAh g-1, a Coulombic efficiency of 95.7%, and a low polarization of 0.14 V. The HIML-introduced full cell exposes a high energy density of 389 Wh kg-1, indicating a notably higher value among the reported Li2S-based Li metal batteries. These findings demonstrate that HIML offers a robust and scalable strategy for stabilizing Li plating interfaces, paving the way toward practical, high-performance anode-less Li-S batteries.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.