{"title":"含水锌碘电池阴极工程设计策略与先进方法。","authors":"Derong Liu, Zhao Wang, Dian Zhao, Shaojie Guo, Liangzeyu Zhang, Yanzhu Luo, Feifei Cao","doi":"10.1002/smtd.202501287","DOIUrl":null,"url":null,"abstract":"<p>Aqueous zinc-iodine batteries (AZIBs) have attracted increasing attention as a safe, cost-effective, and sustainable energy storage solution. As the key component determining capacity and energy density, the iodine cathode faces persistent challenges, including polyiodide shuttling, high-valence iodine species hydrolysis, sluggish redox kinetics, and poor multi-electron utilization. Recent research efforts have focused on rational design of iodine cathodes to enhance iodine species confinement, promote reversible multi-electron redox reactions, and improve reaction kinetics. This review systematically summarizes recent advances of iodine cathode design strategies in two-electron and multi-electron AZIBs, emphasizing material structures, interaction mechanisms, and their roles in improving reaction kinetics. Finally, perspectives are offered on future opportunities to guide the development of high-performance, long-life AZIBs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 9","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Strategies and Advanced Methods for Cathode Engineering in Aqueous Zinc-Iodine Batteries\",\"authors\":\"Derong Liu, Zhao Wang, Dian Zhao, Shaojie Guo, Liangzeyu Zhang, Yanzhu Luo, Feifei Cao\",\"doi\":\"10.1002/smtd.202501287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aqueous zinc-iodine batteries (AZIBs) have attracted increasing attention as a safe, cost-effective, and sustainable energy storage solution. As the key component determining capacity and energy density, the iodine cathode faces persistent challenges, including polyiodide shuttling, high-valence iodine species hydrolysis, sluggish redox kinetics, and poor multi-electron utilization. Recent research efforts have focused on rational design of iodine cathodes to enhance iodine species confinement, promote reversible multi-electron redox reactions, and improve reaction kinetics. This review systematically summarizes recent advances of iodine cathode design strategies in two-electron and multi-electron AZIBs, emphasizing material structures, interaction mechanisms, and their roles in improving reaction kinetics. Finally, perspectives are offered on future opportunities to guide the development of high-performance, long-life AZIBs.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202501287\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202501287","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Design Strategies and Advanced Methods for Cathode Engineering in Aqueous Zinc-Iodine Batteries
Aqueous zinc-iodine batteries (AZIBs) have attracted increasing attention as a safe, cost-effective, and sustainable energy storage solution. As the key component determining capacity and energy density, the iodine cathode faces persistent challenges, including polyiodide shuttling, high-valence iodine species hydrolysis, sluggish redox kinetics, and poor multi-electron utilization. Recent research efforts have focused on rational design of iodine cathodes to enhance iodine species confinement, promote reversible multi-electron redox reactions, and improve reaction kinetics. This review systematically summarizes recent advances of iodine cathode design strategies in two-electron and multi-electron AZIBs, emphasizing material structures, interaction mechanisms, and their roles in improving reaction kinetics. Finally, perspectives are offered on future opportunities to guide the development of high-performance, long-life AZIBs.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.