{"title":"一种真菌siRNA参与苹果侵染过程中由vmrdr介导的毒力的遗传稳健性","authors":"Jiahao Liang, Jie Wang, Peixin Wang, Ruixuan Fan, Hao Feng, Lili Huang","doi":"10.1111/pce.70136","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic robustness refers to the ability of organisms to maintain normal phenotypes in the face of genetic variation, such as gene deletion. In plant pathogenic fungi, RNA-dependent RNA polymerases (RdRPs) play a crucial role in RNA interference (RNAi) signalling amplification in plant-pathogen interactions. However, the genetic robustness of RdRP-mediated fungal virulence and the molecular mechanisms regulating robustness remain elusive. In this study, we characterized the virulence genetic robustness following VmRDR3 knockout in Valsa mali during apple infection, and revealed an siRNA-mediated regulatory mechanism for genetic robustness. It was demonstrated that VmRDR3 knockout could induce compensatory upregulation of paralogous gene VmRDR2, which resulted in the stable abundance of sRNAs and the induction of new sRNAs generation, such as Vm-siR43. This siRNA specifically degrades MdWRKY3 (a disease resistance-related WRKY transcription factor gene in apple) in a sequence-specific manner, thereby suppressing host resistance. Concurrently, Vm-siR43 silences the fungal hypothetical protein gene VmHy5, impairing mycelial growth of V. mali. Our findings reveal a novel epigenetic regulation mechanism underlying RdRP-mediated fungal virulence robustness, operating through posttranscriptional gene silencing by a fungal siRNA. The results advance the understanding of the functional complexity of fungal RNAi components in coordinating pathogen adaptation and infection of the host.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fungal siRNA Is Involved in Genetic Robustness of VmRDR-Mediated Virulence in Valsa mali During Apple Infection.\",\"authors\":\"Jiahao Liang, Jie Wang, Peixin Wang, Ruixuan Fan, Hao Feng, Lili Huang\",\"doi\":\"10.1111/pce.70136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic robustness refers to the ability of organisms to maintain normal phenotypes in the face of genetic variation, such as gene deletion. In plant pathogenic fungi, RNA-dependent RNA polymerases (RdRPs) play a crucial role in RNA interference (RNAi) signalling amplification in plant-pathogen interactions. However, the genetic robustness of RdRP-mediated fungal virulence and the molecular mechanisms regulating robustness remain elusive. In this study, we characterized the virulence genetic robustness following VmRDR3 knockout in Valsa mali during apple infection, and revealed an siRNA-mediated regulatory mechanism for genetic robustness. It was demonstrated that VmRDR3 knockout could induce compensatory upregulation of paralogous gene VmRDR2, which resulted in the stable abundance of sRNAs and the induction of new sRNAs generation, such as Vm-siR43. This siRNA specifically degrades MdWRKY3 (a disease resistance-related WRKY transcription factor gene in apple) in a sequence-specific manner, thereby suppressing host resistance. Concurrently, Vm-siR43 silences the fungal hypothetical protein gene VmHy5, impairing mycelial growth of V. mali. Our findings reveal a novel epigenetic regulation mechanism underlying RdRP-mediated fungal virulence robustness, operating through posttranscriptional gene silencing by a fungal siRNA. The results advance the understanding of the functional complexity of fungal RNAi components in coordinating pathogen adaptation and infection of the host.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.70136\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70136","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A Fungal siRNA Is Involved in Genetic Robustness of VmRDR-Mediated Virulence in Valsa mali During Apple Infection.
Genetic robustness refers to the ability of organisms to maintain normal phenotypes in the face of genetic variation, such as gene deletion. In plant pathogenic fungi, RNA-dependent RNA polymerases (RdRPs) play a crucial role in RNA interference (RNAi) signalling amplification in plant-pathogen interactions. However, the genetic robustness of RdRP-mediated fungal virulence and the molecular mechanisms regulating robustness remain elusive. In this study, we characterized the virulence genetic robustness following VmRDR3 knockout in Valsa mali during apple infection, and revealed an siRNA-mediated regulatory mechanism for genetic robustness. It was demonstrated that VmRDR3 knockout could induce compensatory upregulation of paralogous gene VmRDR2, which resulted in the stable abundance of sRNAs and the induction of new sRNAs generation, such as Vm-siR43. This siRNA specifically degrades MdWRKY3 (a disease resistance-related WRKY transcription factor gene in apple) in a sequence-specific manner, thereby suppressing host resistance. Concurrently, Vm-siR43 silences the fungal hypothetical protein gene VmHy5, impairing mycelial growth of V. mali. Our findings reveal a novel epigenetic regulation mechanism underlying RdRP-mediated fungal virulence robustness, operating through posttranscriptional gene silencing by a fungal siRNA. The results advance the understanding of the functional complexity of fungal RNAi components in coordinating pathogen adaptation and infection of the host.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.