非生理性方向负荷通过增强腔隙流体动力学增加骨适应性反应。

IF 5.9 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Yuan Wang, Ruisen Fu, Haisheng Yang
{"title":"非生理性方向负荷通过增强腔隙流体动力学增加骨适应性反应。","authors":"Yuan Wang, Ruisen Fu, Haisheng Yang","doi":"10.1093/jbmr/zjaf117","DOIUrl":null,"url":null,"abstract":"<p><p>It's been proposed that bone adaptation is \"error-driven\", namely, bone is more sensitive to non-physiological loading (e.g., loading in a non-physiological direction). However, the effect of physiological vs. non-physiological loading on bone adaptation and its underlying mechanism are not fully understood. We hypothesized that loading in a non-physiological direction would increase osteogenesis via enhancing fluid flow within the lacunocanalicular network (LCN), independent of the strain magnitude. To test this hypothesis, we first examined the effects of physiological and non-physiological direction loading on bone formation responses with axial and transversal in vivo loading models of the mouse tibia, respectively, under a strain-matched condition. Next, an in silico whole bone-LCN multiscale model was developed to compute loading-induced strains and fluid shear stresses within the LCN. Lastly, regression analyses were performed to examine the spatial correlations between bone mechanoresponses and fluid shear stress (and strain). Results showed that the transversal loading led to an increased cortical bone response compared to the axial loading even though the strains were matched. The transversal loading-induced increase in bone response was associated with enhanced lacunocanalicular fluid flow rather than strain. Additionally, strong correlations existed between bone mechanoresponses and fluid shear stress whereas no correlation was detected between bone responses and strain. These results support our hypothesis and may explain why bone adaptation is more sensitive to loading in a non-physiological direction. The findings also highlight the key role of the fluid dynamic microenvironment within LCN in regulating bone mechanoadaptation.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-physiological direction loading increases bone adaptive responses by enhancing lacunocanalicular fluid dynamics.\",\"authors\":\"Yuan Wang, Ruisen Fu, Haisheng Yang\",\"doi\":\"10.1093/jbmr/zjaf117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It's been proposed that bone adaptation is \\\"error-driven\\\", namely, bone is more sensitive to non-physiological loading (e.g., loading in a non-physiological direction). However, the effect of physiological vs. non-physiological loading on bone adaptation and its underlying mechanism are not fully understood. We hypothesized that loading in a non-physiological direction would increase osteogenesis via enhancing fluid flow within the lacunocanalicular network (LCN), independent of the strain magnitude. To test this hypothesis, we first examined the effects of physiological and non-physiological direction loading on bone formation responses with axial and transversal in vivo loading models of the mouse tibia, respectively, under a strain-matched condition. Next, an in silico whole bone-LCN multiscale model was developed to compute loading-induced strains and fluid shear stresses within the LCN. Lastly, regression analyses were performed to examine the spatial correlations between bone mechanoresponses and fluid shear stress (and strain). Results showed that the transversal loading led to an increased cortical bone response compared to the axial loading even though the strains were matched. The transversal loading-induced increase in bone response was associated with enhanced lacunocanalicular fluid flow rather than strain. Additionally, strong correlations existed between bone mechanoresponses and fluid shear stress whereas no correlation was detected between bone responses and strain. These results support our hypothesis and may explain why bone adaptation is more sensitive to loading in a non-physiological direction. The findings also highlight the key role of the fluid dynamic microenvironment within LCN in regulating bone mechanoadaptation.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjaf117\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjaf117","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

有人提出骨适应是“错误驱动”的,即骨对非生理性负荷(如非生理性方向的负荷)更为敏感。然而,生理负荷与非生理负荷对骨适应的影响及其潜在机制尚不完全清楚。我们假设,非生理方向的载荷会通过增强腔隙管网络(LCN)内的流体流动来促进成骨,而与应变大小无关。为了验证这一假设,我们首先在应变匹配条件下,分别用小鼠胫骨的轴向和横向体内加载模型研究了生理和非生理方向加载对骨形成反应的影响。其次,建立了全骨-LCN多尺度硅模型,计算了LCN内部的载荷诱导应变和流体剪切应力。最后,进行回归分析以检验骨力学反应与流体剪切应力(和应变)之间的空间相关性。结果表明,与轴向加载相比,横向加载导致皮质骨反应增加,即使应变匹配。横向负荷引起的骨反应增加与腔隙液体流动增强有关,而不是与应变有关。此外,骨力学反应与流体剪切应力之间存在很强的相关性,而骨反应与应变之间没有相关性。这些结果支持了我们的假设,并可能解释了为什么骨适应对非生理方向的负荷更敏感。研究结果还强调了LCN内流体动力微环境在调节骨力学适应中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-physiological direction loading increases bone adaptive responses by enhancing lacunocanalicular fluid dynamics.

It's been proposed that bone adaptation is "error-driven", namely, bone is more sensitive to non-physiological loading (e.g., loading in a non-physiological direction). However, the effect of physiological vs. non-physiological loading on bone adaptation and its underlying mechanism are not fully understood. We hypothesized that loading in a non-physiological direction would increase osteogenesis via enhancing fluid flow within the lacunocanalicular network (LCN), independent of the strain magnitude. To test this hypothesis, we first examined the effects of physiological and non-physiological direction loading on bone formation responses with axial and transversal in vivo loading models of the mouse tibia, respectively, under a strain-matched condition. Next, an in silico whole bone-LCN multiscale model was developed to compute loading-induced strains and fluid shear stresses within the LCN. Lastly, regression analyses were performed to examine the spatial correlations between bone mechanoresponses and fluid shear stress (and strain). Results showed that the transversal loading led to an increased cortical bone response compared to the axial loading even though the strains were matched. The transversal loading-induced increase in bone response was associated with enhanced lacunocanalicular fluid flow rather than strain. Additionally, strong correlations existed between bone mechanoresponses and fluid shear stress whereas no correlation was detected between bone responses and strain. These results support our hypothesis and may explain why bone adaptation is more sensitive to loading in a non-physiological direction. The findings also highlight the key role of the fluid dynamic microenvironment within LCN in regulating bone mechanoadaptation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信