David Ory, Nicole Gravier-Bonnet, Pascale Chabanet, Chloé A.- F. Bourmaud, Emilie Boissin
{"title":"留尼汪岛真藻和中藻种群之间连通性的对比模式支持深礁避难假说。","authors":"David Ory, Nicole Gravier-Bonnet, Pascale Chabanet, Chloé A.- F. Bourmaud, Emilie Boissin","doi":"10.1111/mec.70089","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the context of coral reef decline, mesophotic coral ecosystems (MCEs, 30–150 m) offer hope for the recovery of degraded euphotic reefs. The Deep Reef Refuge Hypothesis (DRRH) postulates the potential of mesophotic reefs to reseed euphotic reefs. This hypothesis needs to be further tested by estimating connectivity along the depth gradient. Mesophotic data are lacking worldwide, particularly in the southwestern Indian Ocean (SWIO). Here, using a total of 2218 samples collected at depths ranging from 10 to 103 m, we estimated the connectivity of 7 hydroid species sampled at euphotic, upper, and lower mesophotic depths around Reunion Island using a multi-species comparative framework. Population genetic analyses using 8–17 microsatellite markers per species (80 markers in total) as well as Bayesian inference were performed to estimate population structure and contemporary migration rates to highlight connectivity patterns and directionality of gene flow between depths. The results revealed three main genetic patterns depending on the species: a horizontal stepping stone pattern between areas around the island, a vertical stepping stone pattern between adjacent depths, and a quasi-panmictic pattern. Each species showed some specificity within these patterns, but overall, at least 4 of the 7 species support the assumption of vertical connectivity from the Deep Reef Refuge Hypothesis, highlighting the importance of studying multiple species. The existence of vertical connectivity between euphotic and mesophotic depths in the southwestern Indian Ocean confirms the importance of mesophotic coral ecosystems for conservation efforts and our global understanding of coral reef ecosystem dynamics.</p>\n </div>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":"34 19","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrasting Patterns of Connectivity Between Populations of Euphotic and Mesophotic Hydroids in Reunion Island Support the Deep Reef Refuge Hypothesis\",\"authors\":\"David Ory, Nicole Gravier-Bonnet, Pascale Chabanet, Chloé A.- F. Bourmaud, Emilie Boissin\",\"doi\":\"10.1111/mec.70089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In the context of coral reef decline, mesophotic coral ecosystems (MCEs, 30–150 m) offer hope for the recovery of degraded euphotic reefs. The Deep Reef Refuge Hypothesis (DRRH) postulates the potential of mesophotic reefs to reseed euphotic reefs. This hypothesis needs to be further tested by estimating connectivity along the depth gradient. Mesophotic data are lacking worldwide, particularly in the southwestern Indian Ocean (SWIO). Here, using a total of 2218 samples collected at depths ranging from 10 to 103 m, we estimated the connectivity of 7 hydroid species sampled at euphotic, upper, and lower mesophotic depths around Reunion Island using a multi-species comparative framework. Population genetic analyses using 8–17 microsatellite markers per species (80 markers in total) as well as Bayesian inference were performed to estimate population structure and contemporary migration rates to highlight connectivity patterns and directionality of gene flow between depths. The results revealed three main genetic patterns depending on the species: a horizontal stepping stone pattern between areas around the island, a vertical stepping stone pattern between adjacent depths, and a quasi-panmictic pattern. Each species showed some specificity within these patterns, but overall, at least 4 of the 7 species support the assumption of vertical connectivity from the Deep Reef Refuge Hypothesis, highlighting the importance of studying multiple species. The existence of vertical connectivity between euphotic and mesophotic depths in the southwestern Indian Ocean confirms the importance of mesophotic coral ecosystems for conservation efforts and our global understanding of coral reef ecosystem dynamics.</p>\\n </div>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\"34 19\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mec.70089\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mec.70089","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Contrasting Patterns of Connectivity Between Populations of Euphotic and Mesophotic Hydroids in Reunion Island Support the Deep Reef Refuge Hypothesis
In the context of coral reef decline, mesophotic coral ecosystems (MCEs, 30–150 m) offer hope for the recovery of degraded euphotic reefs. The Deep Reef Refuge Hypothesis (DRRH) postulates the potential of mesophotic reefs to reseed euphotic reefs. This hypothesis needs to be further tested by estimating connectivity along the depth gradient. Mesophotic data are lacking worldwide, particularly in the southwestern Indian Ocean (SWIO). Here, using a total of 2218 samples collected at depths ranging from 10 to 103 m, we estimated the connectivity of 7 hydroid species sampled at euphotic, upper, and lower mesophotic depths around Reunion Island using a multi-species comparative framework. Population genetic analyses using 8–17 microsatellite markers per species (80 markers in total) as well as Bayesian inference were performed to estimate population structure and contemporary migration rates to highlight connectivity patterns and directionality of gene flow between depths. The results revealed three main genetic patterns depending on the species: a horizontal stepping stone pattern between areas around the island, a vertical stepping stone pattern between adjacent depths, and a quasi-panmictic pattern. Each species showed some specificity within these patterns, but overall, at least 4 of the 7 species support the assumption of vertical connectivity from the Deep Reef Refuge Hypothesis, highlighting the importance of studying multiple species. The existence of vertical connectivity between euphotic and mesophotic depths in the southwestern Indian Ocean confirms the importance of mesophotic coral ecosystems for conservation efforts and our global understanding of coral reef ecosystem dynamics.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms