RSeT人胚胎干细胞对初始和形成性多能转化的抗性。

IF 3.6 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2025-09-17 DOI:10.1093/stmcls/sxaf056
Kevin G Chen, Kory R Johnson, Kyeyoon Park, Dragan Maric, Forest Yang, Wenfang Liu, Yang C Fann, Barbara S Mallon, Pamela G Robey
{"title":"RSeT人胚胎干细胞对初始和形成性多能转化的抗性。","authors":"Kevin G Chen, Kory R Johnson, Kyeyoon Park, Dragan Maric, Forest Yang, Wenfang Liu, Yang C Fann, Barbara S Mallon, Pamela G Robey","doi":"10.1093/stmcls/sxaf056","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most important properties of human embryonic stem cells (hESCs) is their ability to exist in primed and naive pluripotent states. Our previous meta-analysis indicated the existence of heterogeneous pluripotent states derived from diverse naive protocols. In this study, we characterized a commercial, RSeT-based pluripotent state under various growth conditions. Notably, RSeT hESCs can circumvent the hypoxic growth conditions required by naive hESCs, although some RSeT cells (eg, H1 cells) exhibit much lower single-cell plating efficiency and display altered or significantly retarded cell growth under both normoxia and hypoxia. Importantly, RSeT hPSCs lack many transcriptomic hallmarks of naive and formative pluripotency (the phase between naive and primed states). Integrative transcriptome analysis suggests that our primed and RSeT hESCs are similar to the early stage of post-implantation embryos, in line with previously reported primary hESCs and early hESC cultures. Moreover, RSeT hESCs do not express naive surface markers such as SUSD2 and CD75 at significant levels. At the biochemical level, RSeT hESCs show differential dependence on FGF2 and co-independency on both Janus kinase (JAK) and TGFβ signaling in a cell line-specific manner. Thus, RSeT hESCs represent a previously unrecognized pluripotent state downstream of naive pluripotency. Our data suggest that human naive pluripotent potentials may be restricted in RSeT medium, which sustains FGF2 activity. Hence, this study provides new insights into pluripotent state transitions in vitro.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471354/pdf/","citationCount":"0","resultStr":"{\"title\":\"Resistance to naive and formative pluripotency conversion in RSeT human embryonic stem cells.\",\"authors\":\"Kevin G Chen, Kory R Johnson, Kyeyoon Park, Dragan Maric, Forest Yang, Wenfang Liu, Yang C Fann, Barbara S Mallon, Pamela G Robey\",\"doi\":\"10.1093/stmcls/sxaf056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the most important properties of human embryonic stem cells (hESCs) is their ability to exist in primed and naive pluripotent states. Our previous meta-analysis indicated the existence of heterogeneous pluripotent states derived from diverse naive protocols. In this study, we characterized a commercial, RSeT-based pluripotent state under various growth conditions. Notably, RSeT hESCs can circumvent the hypoxic growth conditions required by naive hESCs, although some RSeT cells (eg, H1 cells) exhibit much lower single-cell plating efficiency and display altered or significantly retarded cell growth under both normoxia and hypoxia. Importantly, RSeT hPSCs lack many transcriptomic hallmarks of naive and formative pluripotency (the phase between naive and primed states). Integrative transcriptome analysis suggests that our primed and RSeT hESCs are similar to the early stage of post-implantation embryos, in line with previously reported primary hESCs and early hESC cultures. Moreover, RSeT hESCs do not express naive surface markers such as SUSD2 and CD75 at significant levels. At the biochemical level, RSeT hESCs show differential dependence on FGF2 and co-independency on both Janus kinase (JAK) and TGFβ signaling in a cell line-specific manner. Thus, RSeT hESCs represent a previously unrecognized pluripotent state downstream of naive pluripotency. Our data suggest that human naive pluripotent potentials may be restricted in RSeT medium, which sustains FGF2 activity. Hence, this study provides new insights into pluripotent state transitions in vitro.</p>\",\"PeriodicalId\":231,\"journal\":{\"name\":\"STEM CELLS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471354/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STEM CELLS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stmcls/sxaf056\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxaf056","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人胚胎干细胞(hESCs)最重要的特性之一是它们能够存在于启动和初始多能状态。我们之前的荟萃分析表明,存在来自不同原始方案的异质多能状态。在这项研究中,我们在不同的生长条件下描述了一种商业的、基于rset的多能状态。值得注意的是,尽管一些RSeT细胞(如H1细胞)在常氧和缺氧条件下单细胞镀效率低得多,并且细胞生长改变或明显迟缓,但RSeT hESCs可以绕过初始hESCs所需的缺氧生长条件。重要的是,RSeT人造血干细胞缺乏许多初始和形成多能性(初始和启动状态之间的阶段)的转录组特征。整合转录组分析表明,我们的引物和复位hESC与植入后胚胎的早期阶段相似,与先前报道的原代hESC和早期hESC培养一致。此外,RSeT hESCs不显著表达初始表面标记物,如SUSD2和CD75。在生化水平上,RSeT hESCs表现出对FGF2的差异依赖性,并以细胞系特异性的方式共同独立于Janus激酶(JAK)和TGFβ信号传导。因此,RSeT hESCs代表了原始多能性下游的一种以前未被识别的多能状态。我们的数据表明,在维持FGF2活性的RSeT培养基中,人类幼稚多能潜能可能受到限制。因此,本研究为体外多能状态转变提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resistance to naive and formative pluripotency conversion in RSeT human embryonic stem cells.

One of the most important properties of human embryonic stem cells (hESCs) is their ability to exist in primed and naive pluripotent states. Our previous meta-analysis indicated the existence of heterogeneous pluripotent states derived from diverse naive protocols. In this study, we characterized a commercial, RSeT-based pluripotent state under various growth conditions. Notably, RSeT hESCs can circumvent the hypoxic growth conditions required by naive hESCs, although some RSeT cells (eg, H1 cells) exhibit much lower single-cell plating efficiency and display altered or significantly retarded cell growth under both normoxia and hypoxia. Importantly, RSeT hPSCs lack many transcriptomic hallmarks of naive and formative pluripotency (the phase between naive and primed states). Integrative transcriptome analysis suggests that our primed and RSeT hESCs are similar to the early stage of post-implantation embryos, in line with previously reported primary hESCs and early hESC cultures. Moreover, RSeT hESCs do not express naive surface markers such as SUSD2 and CD75 at significant levels. At the biochemical level, RSeT hESCs show differential dependence on FGF2 and co-independency on both Janus kinase (JAK) and TGFβ signaling in a cell line-specific manner. Thus, RSeT hESCs represent a previously unrecognized pluripotent state downstream of naive pluripotency. Our data suggest that human naive pluripotent potentials may be restricted in RSeT medium, which sustains FGF2 activity. Hence, this study provides new insights into pluripotent state transitions in vitro.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信