Yunting Lan, Kuanming Yao, Pujing Shi, Yu Xue, Ji Liu
{"title":"基于水凝胶电极的共形触觉交互无线电触觉系统。","authors":"Yunting Lan, Kuanming Yao, Pujing Shi, Yu Xue, Ji Liu","doi":"10.1002/smtd.202501142","DOIUrl":null,"url":null,"abstract":"<p>A wireless epidermal electrotactile interface is demonstrated through integration of skin-conformal electrodes and flexible circuitry, addressing existing limitations in haptic technology caused by mechanical mismatch and system-level integration challenges. This electrotactile system achieves low stimulation thresholds (<20 V) through optimized electrode-skin modulus matching and improved electrochemical interfaces, enabling pain-free tactile sensation generation across finger pads. The millimeter-scale architecture incorporates multiplexed stimulation channels that spatially map to ISO-standard Braille configurations, demonstrating 91.90% alphanumeric recognition accuracy in human trials. Additionally, the system's movement control capabilities are demonstrated for visually impaired users navigating complex environments, enhancing their independence and interaction in daily activities.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 9","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wireless Electrotactile System with Hydrogel-Based Electrodes for Conformal Tactile Interaction\",\"authors\":\"Yunting Lan, Kuanming Yao, Pujing Shi, Yu Xue, Ji Liu\",\"doi\":\"10.1002/smtd.202501142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A wireless epidermal electrotactile interface is demonstrated through integration of skin-conformal electrodes and flexible circuitry, addressing existing limitations in haptic technology caused by mechanical mismatch and system-level integration challenges. This electrotactile system achieves low stimulation thresholds (<20 V) through optimized electrode-skin modulus matching and improved electrochemical interfaces, enabling pain-free tactile sensation generation across finger pads. The millimeter-scale architecture incorporates multiplexed stimulation channels that spatially map to ISO-standard Braille configurations, demonstrating 91.90% alphanumeric recognition accuracy in human trials. Additionally, the system's movement control capabilities are demonstrated for visually impaired users navigating complex environments, enhancing their independence and interaction in daily activities.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202501142\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202501142","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Wireless Electrotactile System with Hydrogel-Based Electrodes for Conformal Tactile Interaction
A wireless epidermal electrotactile interface is demonstrated through integration of skin-conformal electrodes and flexible circuitry, addressing existing limitations in haptic technology caused by mechanical mismatch and system-level integration challenges. This electrotactile system achieves low stimulation thresholds (<20 V) through optimized electrode-skin modulus matching and improved electrochemical interfaces, enabling pain-free tactile sensation generation across finger pads. The millimeter-scale architecture incorporates multiplexed stimulation channels that spatially map to ISO-standard Braille configurations, demonstrating 91.90% alphanumeric recognition accuracy in human trials. Additionally, the system's movement control capabilities are demonstrated for visually impaired users navigating complex environments, enhancing their independence and interaction in daily activities.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.