金属-有机框架中导电聚合物包封稳定网状框架和调节界面水的研究

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-03 DOI:10.1002/cssc.202501318
Daqi Song, Mutian Ma, Zhangyi Zheng, Shiwei Mei, Zhihe Wei, Wenjun Yang, Jun Zhong, Zhao Deng, Yang Peng
{"title":"金属-有机框架中导电聚合物包封稳定网状框架和调节界面水的研究","authors":"Daqi Song, Mutian Ma, Zhangyi Zheng, Shiwei Mei, Zhihe Wei, Wenjun Yang, Jun Zhong, Zhao Deng, Yang Peng","doi":"10.1002/cssc.202501318","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical reduction of CO<sub>2</sub> to CH<sub>4</sub> offers a promising pathway for renewable energy storage, yet remains limited by sluggish kinetics, poor catalyst stability, and competing hydrogen evolution reactions (HER). Herein, a host-guest strategy is reported for engineering metal-organic frameworks (MOFs) through the encapsulation of conductive polymers to stabilize reticular skeletons and regulate interfacial water for efficient CO<sub>2</sub>-to-CH<sub>4</sub> conversion. Specifically, polypyrrole (PPy) and polyaniline (PANI) are confined within Cu-anchored UiO-67 frameworks, resulting in hybrid catalysts-PPy@Cu-UiO-67 and PANI@Cu-UiO-67-with preserved crystallinity and enhanced electronic conductivity. Among them, PANI@Cu-UiO-67 exhibits superior CH<sub>4</sub> Faradaic efficiency (FE<sub>CH4</sub> up to 71.1%), outperforming PPy@Cu-UiO-67 and unmodified Cu-UiO-67. Spectroscopic analysis reveals that the polymers reinforce structural integrity and induce distinct perturbations in the interfacial water network. In situ Raman and attenuated total reflection surface-enhanced infrared absorption spectroscopy measurements identify the dominance of weakly hydrogen-bonded water (2-HB·H<sub>2</sub>O) at the PANI-modified interface, which supports rapid proton transfer while suppressing HER. This study offers a rational design strategy for MOF electrocatalysts by integrating conductive polymers to modulate both the electronic and interfacial environments for high-efficiency methane production.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501318"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilizing Reticular Frameworks and Modulating Interfacial Water via Conductive Polymer Encapsulation in Metal-Organic Frameworks Electrocatalysts for Efficient Methane Production.\",\"authors\":\"Daqi Song, Mutian Ma, Zhangyi Zheng, Shiwei Mei, Zhihe Wei, Wenjun Yang, Jun Zhong, Zhao Deng, Yang Peng\",\"doi\":\"10.1002/cssc.202501318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrochemical reduction of CO<sub>2</sub> to CH<sub>4</sub> offers a promising pathway for renewable energy storage, yet remains limited by sluggish kinetics, poor catalyst stability, and competing hydrogen evolution reactions (HER). Herein, a host-guest strategy is reported for engineering metal-organic frameworks (MOFs) through the encapsulation of conductive polymers to stabilize reticular skeletons and regulate interfacial water for efficient CO<sub>2</sub>-to-CH<sub>4</sub> conversion. Specifically, polypyrrole (PPy) and polyaniline (PANI) are confined within Cu-anchored UiO-67 frameworks, resulting in hybrid catalysts-PPy@Cu-UiO-67 and PANI@Cu-UiO-67-with preserved crystallinity and enhanced electronic conductivity. Among them, PANI@Cu-UiO-67 exhibits superior CH<sub>4</sub> Faradaic efficiency (FE<sub>CH4</sub> up to 71.1%), outperforming PPy@Cu-UiO-67 and unmodified Cu-UiO-67. Spectroscopic analysis reveals that the polymers reinforce structural integrity and induce distinct perturbations in the interfacial water network. In situ Raman and attenuated total reflection surface-enhanced infrared absorption spectroscopy measurements identify the dominance of weakly hydrogen-bonded water (2-HB·H<sub>2</sub>O) at the PANI-modified interface, which supports rapid proton transfer while suppressing HER. This study offers a rational design strategy for MOF electrocatalysts by integrating conductive polymers to modulate both the electronic and interfacial environments for high-efficiency methane production.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501318\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501318\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501318","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学将CO2还原为CH4为可再生能源存储提供了一条很有前途的途径,但仍然受到动力学缓慢、催化剂稳定性差和析氢反应(HER)竞争的限制。本文报道了一种主客策略,用于工程金属有机框架(mof),通过导电聚合物的封装来稳定网状骨架并调节界面水,以实现二氧化碳到ch4的有效转化。具体来说,聚吡咯(PPy)和聚苯胺(PANI)被限制在cu锚定的UiO-67框架中,从而保持了catalysts-PPy@Cu-UiO-67和PANI@Cu-UiO-67-with的结晶度并增强了电子导电性。其中,PANI@Cu-UiO-67具有较好的CH4法拉第效率(FECH4可达71.1%),优于PPy@Cu-UiO-67和未改性cu - uuo -67。光谱分析表明,聚合物增强了结构完整性,并在界面水网络中引起了明显的扰动。原位拉曼和衰减全反射表面增强红外吸收光谱测量发现,在聚苯胺修饰的界面上,弱氢键水(2-HB·H2O)占主导地位,它支持快速质子转移,同时抑制HER。本研究提供了一种合理的MOF电催化剂设计策略,通过整合导电聚合物来调节电子和界面环境,以实现高效产甲烷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing Reticular Frameworks and Modulating Interfacial Water via Conductive Polymer Encapsulation in Metal-Organic Frameworks Electrocatalysts for Efficient Methane Production.

The electrochemical reduction of CO2 to CH4 offers a promising pathway for renewable energy storage, yet remains limited by sluggish kinetics, poor catalyst stability, and competing hydrogen evolution reactions (HER). Herein, a host-guest strategy is reported for engineering metal-organic frameworks (MOFs) through the encapsulation of conductive polymers to stabilize reticular skeletons and regulate interfacial water for efficient CO2-to-CH4 conversion. Specifically, polypyrrole (PPy) and polyaniline (PANI) are confined within Cu-anchored UiO-67 frameworks, resulting in hybrid catalysts-PPy@Cu-UiO-67 and PANI@Cu-UiO-67-with preserved crystallinity and enhanced electronic conductivity. Among them, PANI@Cu-UiO-67 exhibits superior CH4 Faradaic efficiency (FECH4 up to 71.1%), outperforming PPy@Cu-UiO-67 and unmodified Cu-UiO-67. Spectroscopic analysis reveals that the polymers reinforce structural integrity and induce distinct perturbations in the interfacial water network. In situ Raman and attenuated total reflection surface-enhanced infrared absorption spectroscopy measurements identify the dominance of weakly hydrogen-bonded water (2-HB·H2O) at the PANI-modified interface, which supports rapid proton transfer while suppressing HER. This study offers a rational design strategy for MOF electrocatalysts by integrating conductive polymers to modulate both the electronic and interfacial environments for high-efficiency methane production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信