{"title":"atropisomer[1,1'-对萘]-2,2'-二胺(BINAM)及其类似物在人癌细胞中的细胞毒性:对映体选择性、构效关系及机制","authors":"Malte Eichelbaum, Patrick J Bednarski","doi":"10.1002/cmdc.202500426","DOIUrl":null,"url":null,"abstract":"<p><p>Binaphthyls usually serve as key chiral ligands in catalysts for asymmetric syntheses, having been reported in thousands of published reactions. Herein, the discovery that atropisomeric (R)-[1,1'-binaphthalene]-2,2'-diamine (R-BINAM, 1(R)) is a moderately potent spindle poison, causing antiproliferation, depolymerization of microtubules, multipolar spindles, pericentriolar material (PCM) fragmentation, mitotic catastrophe, multinucleated cells, and apoptosis in cancer and normal human cell lines, is reported. Furthermore, the resulting abnormalities resemble those induced by microtubule-depolymerizing agents (MDAs) such as colchicine. In contrast, the enantiomer S-BINAM (1(S)) was inactive in all biological assays. Additionally, the structure-activity relationships of a selection of R- and S-BINAM derivatives with key structural differences have been studied; these studies show the same enantiomeric trend as with R-BINAM and provide insight into the structural requirements for the antiproliferative activity of this compound class. These findings should be useful for the development of more selective spindle poisons, especially due to the natural rigidity of binaphthyls and their scaffold that allows for various modifications.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202500426"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytotoxicity of Atropisomeric [1,1'-Binaphthalene]-2,2'-Diamines (BINAM) and Analogs in Human Cancer Cells: Enantioselectivity, Structure-Activity Relationships, and Mechanism.\",\"authors\":\"Malte Eichelbaum, Patrick J Bednarski\",\"doi\":\"10.1002/cmdc.202500426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Binaphthyls usually serve as key chiral ligands in catalysts for asymmetric syntheses, having been reported in thousands of published reactions. Herein, the discovery that atropisomeric (R)-[1,1'-binaphthalene]-2,2'-diamine (R-BINAM, 1(R)) is a moderately potent spindle poison, causing antiproliferation, depolymerization of microtubules, multipolar spindles, pericentriolar material (PCM) fragmentation, mitotic catastrophe, multinucleated cells, and apoptosis in cancer and normal human cell lines, is reported. Furthermore, the resulting abnormalities resemble those induced by microtubule-depolymerizing agents (MDAs) such as colchicine. In contrast, the enantiomer S-BINAM (1(S)) was inactive in all biological assays. Additionally, the structure-activity relationships of a selection of R- and S-BINAM derivatives with key structural differences have been studied; these studies show the same enantiomeric trend as with R-BINAM and provide insight into the structural requirements for the antiproliferative activity of this compound class. These findings should be useful for the development of more selective spindle poisons, especially due to the natural rigidity of binaphthyls and their scaffold that allows for various modifications.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202500426\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202500426\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202500426","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Cytotoxicity of Atropisomeric [1,1'-Binaphthalene]-2,2'-Diamines (BINAM) and Analogs in Human Cancer Cells: Enantioselectivity, Structure-Activity Relationships, and Mechanism.
Binaphthyls usually serve as key chiral ligands in catalysts for asymmetric syntheses, having been reported in thousands of published reactions. Herein, the discovery that atropisomeric (R)-[1,1'-binaphthalene]-2,2'-diamine (R-BINAM, 1(R)) is a moderately potent spindle poison, causing antiproliferation, depolymerization of microtubules, multipolar spindles, pericentriolar material (PCM) fragmentation, mitotic catastrophe, multinucleated cells, and apoptosis in cancer and normal human cell lines, is reported. Furthermore, the resulting abnormalities resemble those induced by microtubule-depolymerizing agents (MDAs) such as colchicine. In contrast, the enantiomer S-BINAM (1(S)) was inactive in all biological assays. Additionally, the structure-activity relationships of a selection of R- and S-BINAM derivatives with key structural differences have been studied; these studies show the same enantiomeric trend as with R-BINAM and provide insight into the structural requirements for the antiproliferative activity of this compound class. These findings should be useful for the development of more selective spindle poisons, especially due to the natural rigidity of binaphthyls and their scaffold that allows for various modifications.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.