选择性电化学C-N耦合微环境工程研究进展。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-02 DOI:10.1002/cssc.202501366
Jianping Bai, Xinhai Cai, Xin Liu, Nirala Singh, Libo Yao
{"title":"选择性电化学C-N耦合微环境工程研究进展。","authors":"Jianping Bai, Xinhai Cai, Xin Liu, Nirala Singh, Libo Yao","doi":"10.1002/cssc.202501366","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical C-N coupling via the coreduction of CO<sub>2</sub> and nitrogenous species (N<sub>2</sub>/NO<sub>x</sub>) presents a sustainable route to synthesize value-added C-N compounds under mild conditions. However, competing pathways and mismatched intermediate kinetics hinder the selective formation of products like urea, amines, and amides. Recent advances reveal that rational modulation of the electrochemical microenvironment can effectively steer reaction pathways and stabilize coupling-relevant intermediates. This review systematically summarizes how microenvironment engineering, originally developed for CO<sub>2</sub> and NO<sub>x</sub> reduction reactions, can be leveraged to enhance C-N coupling efficiency and selectivity. The key strategies are categorized into 1) catalyst-centered design (e.g., ligand coordination, defect engineering, and morphology control), 2) ionic and electrolyte modifications (e.g., cation/pH effects), and 3) dynamic approaches such as pulsed electrolysis. These methods shape local fields, surface coverage, and mass transport properties, ultimately directing reactants toward cross-coupling over competing routes. By drawing parallels with well-established CO<sub>2</sub>RR/NO<sub>x</sub>RR systems and showcasing emerging examples in C-N coupling, the central role of microenvironment control is highlighted. Finally, a perspectives on strategies to further improve activity, selectivity, and atom economy in future C-N coupling systems are offered.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2501366"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Microenvironment Engineering for Selective Electrochemical C-N Coupling.\",\"authors\":\"Jianping Bai, Xinhai Cai, Xin Liu, Nirala Singh, Libo Yao\",\"doi\":\"10.1002/cssc.202501366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrochemical C-N coupling via the coreduction of CO<sub>2</sub> and nitrogenous species (N<sub>2</sub>/NO<sub>x</sub>) presents a sustainable route to synthesize value-added C-N compounds under mild conditions. However, competing pathways and mismatched intermediate kinetics hinder the selective formation of products like urea, amines, and amides. Recent advances reveal that rational modulation of the electrochemical microenvironment can effectively steer reaction pathways and stabilize coupling-relevant intermediates. This review systematically summarizes how microenvironment engineering, originally developed for CO<sub>2</sub> and NO<sub>x</sub> reduction reactions, can be leveraged to enhance C-N coupling efficiency and selectivity. The key strategies are categorized into 1) catalyst-centered design (e.g., ligand coordination, defect engineering, and morphology control), 2) ionic and electrolyte modifications (e.g., cation/pH effects), and 3) dynamic approaches such as pulsed electrolysis. These methods shape local fields, surface coverage, and mass transport properties, ultimately directing reactants toward cross-coupling over competing routes. By drawing parallels with well-established CO<sub>2</sub>RR/NO<sub>x</sub>RR systems and showcasing emerging examples in C-N coupling, the central role of microenvironment control is highlighted. Finally, a perspectives on strategies to further improve activity, selectivity, and atom economy in future C-N coupling systems are offered.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2501366\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501366\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501366","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在温和条件下,通过CO2和氮源(N2/NOx)共还原的电化学C-N耦合是合成高附加值C-N化合物的可持续途径。然而,竞争途径和不匹配的中间动力学阻碍了尿素、胺和酰胺等产物的选择性形成。近年来的研究表明,合理调节电化学微环境可以有效地引导反应途径,稳定与偶联有关的中间体。本文系统地总结了微环境工程最初是为二氧化碳和氮氧化物还原反应而开发的,如何利用微环境工程来提高碳氮耦合效率和选择性。关键策略分为1)以催化剂为中心的设计(如配体配位,缺陷工程和形态控制),2)离子和电解质修饰(如阳离子/pH效应),以及3)动态方法,如脉冲电解。这些方法塑造了局部场、表面覆盖和质量输运性质,最终引导反应物在竞争路线上进行交叉耦合。通过与完善的CO2RR/NOxRR系统的相似之处,并展示了C-N耦合的新兴例子,强调了微环境控制的核心作用。最后,展望了未来碳氮耦合系统进一步提高活性、选择性和原子经济性的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advances in Microenvironment Engineering for Selective Electrochemical C-N Coupling.

Electrochemical C-N coupling via the coreduction of CO2 and nitrogenous species (N2/NOx) presents a sustainable route to synthesize value-added C-N compounds under mild conditions. However, competing pathways and mismatched intermediate kinetics hinder the selective formation of products like urea, amines, and amides. Recent advances reveal that rational modulation of the electrochemical microenvironment can effectively steer reaction pathways and stabilize coupling-relevant intermediates. This review systematically summarizes how microenvironment engineering, originally developed for CO2 and NOx reduction reactions, can be leveraged to enhance C-N coupling efficiency and selectivity. The key strategies are categorized into 1) catalyst-centered design (e.g., ligand coordination, defect engineering, and morphology control), 2) ionic and electrolyte modifications (e.g., cation/pH effects), and 3) dynamic approaches such as pulsed electrolysis. These methods shape local fields, surface coverage, and mass transport properties, ultimately directing reactants toward cross-coupling over competing routes. By drawing parallels with well-established CO2RR/NOxRR systems and showcasing emerging examples in C-N coupling, the central role of microenvironment control is highlighted. Finally, a perspectives on strategies to further improve activity, selectivity, and atom economy in future C-N coupling systems are offered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信