由链内光降解和机械反应单元实现双重降解的高密度聚乙烯。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-02 DOI:10.1002/cssc.202501601
Xiaohui Zhang, Yuantao Miao, Shan Tang
{"title":"由链内光降解和机械反应单元实现双重降解的高密度聚乙烯。","authors":"Xiaohui Zhang, Yuantao Miao, Shan Tang","doi":"10.1002/cssc.202501601","DOIUrl":null,"url":null,"abstract":"<p><p>Polyethylenes are the most widely produced plastics but are also major pollutants due to their exceptional chemical stability. Developing environmentally friendly alternatives that can simultaneously respond to multiple degradation triggers to replace conventional polyolefins is desirable. Herein, a novel class of high-density polyethylene materials that degrade upon exposure to light irradiation and mechanical force is reported. This dual degradability is achieved by incorporating in-chain photolyzable carbonyl and mechanoresponsive cyclobutane units via catalytic terpolymerization of ethylene, CO, and cyclobutene derivatives. Incorporating low densities of carbonyl and mechanoresponsive units has minimal impact on the thermomechanical properties of the polyethylene. Mechanical activation through ball-milling triggers hydrolytic degradation via force-induced cycloreversion of the cyclobutane units. This dual degradability can potentially reduce their environmental persistence in the environment.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2501601"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Density Polyethylenes with Dual Degradability Enabled by In-Chain Photolyzable and Mechanoresponsive Units.\",\"authors\":\"Xiaohui Zhang, Yuantao Miao, Shan Tang\",\"doi\":\"10.1002/cssc.202501601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polyethylenes are the most widely produced plastics but are also major pollutants due to their exceptional chemical stability. Developing environmentally friendly alternatives that can simultaneously respond to multiple degradation triggers to replace conventional polyolefins is desirable. Herein, a novel class of high-density polyethylene materials that degrade upon exposure to light irradiation and mechanical force is reported. This dual degradability is achieved by incorporating in-chain photolyzable carbonyl and mechanoresponsive cyclobutane units via catalytic terpolymerization of ethylene, CO, and cyclobutene derivatives. Incorporating low densities of carbonyl and mechanoresponsive units has minimal impact on the thermomechanical properties of the polyethylene. Mechanical activation through ball-milling triggers hydrolytic degradation via force-induced cycloreversion of the cyclobutane units. This dual degradability can potentially reduce their environmental persistence in the environment.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e2501601\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501601\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501601","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚乙烯是最广泛生产的塑料,但由于其特殊的化学稳定性,也是主要的污染物。开发环境友好的替代品,可以同时响应多种降解触发器,以取代传统的聚烯烃是可取的。本文报道了一种新型的高密度聚乙烯材料,这种材料在暴露于光照射和机械力下会降解。这种双重可降解性是通过乙烯、CO和环丁烯衍生物的催化共聚合,将链内光解羰基和机械反应性环丁烷单元结合在一起实现的。结合低密度羰基和机械反应单元对聚乙烯的热机械性能影响最小。通过球磨的机械活化通过环丁烷单元的力诱导环还原触发水解降解。这种双重可降解性可能会降低它们在环境中的持久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Density Polyethylenes with Dual Degradability Enabled by In-Chain Photolyzable and Mechanoresponsive Units.

Polyethylenes are the most widely produced plastics but are also major pollutants due to their exceptional chemical stability. Developing environmentally friendly alternatives that can simultaneously respond to multiple degradation triggers to replace conventional polyolefins is desirable. Herein, a novel class of high-density polyethylene materials that degrade upon exposure to light irradiation and mechanical force is reported. This dual degradability is achieved by incorporating in-chain photolyzable carbonyl and mechanoresponsive cyclobutane units via catalytic terpolymerization of ethylene, CO, and cyclobutene derivatives. Incorporating low densities of carbonyl and mechanoresponsive units has minimal impact on the thermomechanical properties of the polyethylene. Mechanical activation through ball-milling triggers hydrolytic degradation via force-induced cycloreversion of the cyclobutane units. This dual degradability can potentially reduce their environmental persistence in the environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信