Ziyaan A Harji, Christian J Rampal, Esteban C Rodríguez, Virginie Petel Légaré, Alexandra Lissouba, Sabrina Semmler, Meijiang Liao, Jay P Ross, Guy A Rouleau, Christine Vande Velde, Gary A B Armstrong
{"title":"TARDBP (TDP-43)敲入斑马鱼显示迟发性运动表型和大脊髓运动神经元的丢失。","authors":"Ziyaan A Harji, Christian J Rampal, Esteban C Rodríguez, Virginie Petel Légaré, Alexandra Lissouba, Sabrina Semmler, Meijiang Liao, Jay P Ross, Guy A Rouleau, Christine Vande Velde, Gary A B Armstrong","doi":"10.1002/ana.78012","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Mutations in TARDBP (encoding TDP-43) are associated with the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and include familial missense mutations where there are a lack of models and mechanisms examining how they are pathogenic.</p><p><strong>Methods: </strong>In this study, we developed 2 tardbp (Tdp-43) knock-in (KI) zebrafish mutant models encoding the analogous A382T and G348C variants and investigated their degenerative phenotypes.</p><p><strong>Results: </strong>We show that both models display reduced survival as well as an age-dependent motor phenotype that manifests at 1.5 years. Both variants in either the heterozygous or homozygous state did not impact protein expression levels of Tdp-43 in the central nervous system. However, homozygous G347C zebrafish displayed reduced expression levels of the tardbp transcript. We observed muscle cell atrophy starting at 1 year of age and loss of large spinal cord motor neurons in both KI models in older fish (2.35-3 years of age). We did not observe Tdp-43 aggregates. However, we did observe increased cytoplasmic Tdp-43 localization in spinal cord motor neurons in A379T zebrafish. At 1 year of age, whole spinal cord RNA-sequencing revealed an upregulation of neuroinflammatory transcripts in both models, as well as the selective downregulation of transcripts involved with synaptic function in G347C zebrafish, including syn2a, syn2b, syt2a, and stxbp1a.</p><p><strong>Interpretation: </strong>These novel models of common TDP-43 disease variants provide a unique opportunity to further our understanding of neurodegeneration in vivo and demonstrate that mutations in the same protein and domain can manifest with different phenotypes. ANN NEUROL 2025.</p>","PeriodicalId":127,"journal":{"name":"Annals of Neurology","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TARDBP (TDP-43) Knock-in Zebrafish Display a Late-Onset Motor Phenotype and Loss of Large Spinal Cord Motor Neurons.\",\"authors\":\"Ziyaan A Harji, Christian J Rampal, Esteban C Rodríguez, Virginie Petel Légaré, Alexandra Lissouba, Sabrina Semmler, Meijiang Liao, Jay P Ross, Guy A Rouleau, Christine Vande Velde, Gary A B Armstrong\",\"doi\":\"10.1002/ana.78012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Mutations in TARDBP (encoding TDP-43) are associated with the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and include familial missense mutations where there are a lack of models and mechanisms examining how they are pathogenic.</p><p><strong>Methods: </strong>In this study, we developed 2 tardbp (Tdp-43) knock-in (KI) zebrafish mutant models encoding the analogous A382T and G348C variants and investigated their degenerative phenotypes.</p><p><strong>Results: </strong>We show that both models display reduced survival as well as an age-dependent motor phenotype that manifests at 1.5 years. Both variants in either the heterozygous or homozygous state did not impact protein expression levels of Tdp-43 in the central nervous system. However, homozygous G347C zebrafish displayed reduced expression levels of the tardbp transcript. We observed muscle cell atrophy starting at 1 year of age and loss of large spinal cord motor neurons in both KI models in older fish (2.35-3 years of age). We did not observe Tdp-43 aggregates. However, we did observe increased cytoplasmic Tdp-43 localization in spinal cord motor neurons in A379T zebrafish. At 1 year of age, whole spinal cord RNA-sequencing revealed an upregulation of neuroinflammatory transcripts in both models, as well as the selective downregulation of transcripts involved with synaptic function in G347C zebrafish, including syn2a, syn2b, syt2a, and stxbp1a.</p><p><strong>Interpretation: </strong>These novel models of common TDP-43 disease variants provide a unique opportunity to further our understanding of neurodegeneration in vivo and demonstrate that mutations in the same protein and domain can manifest with different phenotypes. ANN NEUROL 2025.</p>\",\"PeriodicalId\":127,\"journal\":{\"name\":\"Annals of Neurology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ana.78012\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ana.78012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
TARDBP (TDP-43) Knock-in Zebrafish Display a Late-Onset Motor Phenotype and Loss of Large Spinal Cord Motor Neurons.
Objective: Mutations in TARDBP (encoding TDP-43) are associated with the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and include familial missense mutations where there are a lack of models and mechanisms examining how they are pathogenic.
Methods: In this study, we developed 2 tardbp (Tdp-43) knock-in (KI) zebrafish mutant models encoding the analogous A382T and G348C variants and investigated their degenerative phenotypes.
Results: We show that both models display reduced survival as well as an age-dependent motor phenotype that manifests at 1.5 years. Both variants in either the heterozygous or homozygous state did not impact protein expression levels of Tdp-43 in the central nervous system. However, homozygous G347C zebrafish displayed reduced expression levels of the tardbp transcript. We observed muscle cell atrophy starting at 1 year of age and loss of large spinal cord motor neurons in both KI models in older fish (2.35-3 years of age). We did not observe Tdp-43 aggregates. However, we did observe increased cytoplasmic Tdp-43 localization in spinal cord motor neurons in A379T zebrafish. At 1 year of age, whole spinal cord RNA-sequencing revealed an upregulation of neuroinflammatory transcripts in both models, as well as the selective downregulation of transcripts involved with synaptic function in G347C zebrafish, including syn2a, syn2b, syt2a, and stxbp1a.
Interpretation: These novel models of common TDP-43 disease variants provide a unique opportunity to further our understanding of neurodegeneration in vivo and demonstrate that mutations in the same protein and domain can manifest with different phenotypes. ANN NEUROL 2025.
期刊介绍:
Annals of Neurology publishes original articles with potential for high impact in understanding the pathogenesis, clinical and laboratory features, diagnosis, treatment, outcomes and science underlying diseases of the human nervous system. Articles should ideally be of broad interest to the academic neurological community rather than solely to subspecialists in a particular field. Studies involving experimental model system, including those in cell and organ cultures and animals, of direct translational relevance to the understanding of neurological disease are also encouraged.