促进电化学氧化的铁位轴向调制。

IF 6.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zhenglong Mao, Shentian Li, Feilong Tan, Cao Li, Lei Jiao, Wenling Gu, Xin Luo
{"title":"促进电化学氧化的铁位轴向调制。","authors":"Zhenglong Mao, Shentian Li, Feilong Tan, Cao Li, Lei Jiao, Wenling Gu, Xin Luo","doi":"10.1039/d5nh00476d","DOIUrl":null,"url":null,"abstract":"<p><p>Fe/NC single-atom catalysts have attracted extensive attention due to their maximal atomic utilization and tunable coordination environments. However, the structure-activity relationship of Fe single atoms in electrooxidation remains unclear. Herein, we report a defect engineering strategy to fine-tune the charge configuration of FeN<sub>4</sub> sites by introducing an axial N ligand and constructing FeN<sub>5</sub>-Fe<sub>1</sub>/NC. This asymmetric coordination environment enhances the catalytic activity for dopamine (DA) oxidation, delivering a 2.1-fold improvement over traditional Fe<sub>1</sub>/NC. The FeN<sub>5</sub>-Fe<sub>1</sub>/NC biosensor exhibits a wide linear detection range of 0.05-500 μM with a low detection limit of 23 nM for DA. Additionally, theoretical calculations confirm that axial N coordination modulates the electronic structure of the Fe center, optimizes intermediate adsorption, and lowers the energy barrier for DA oxidation. This work provides valuable insights into the rational design of single-atom catalysts for high-performance electrochemical sensing and fundamental mechanistic studies at the atomic scale.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axial modulation of Fe sites for boosted electrochemical oxidation.\",\"authors\":\"Zhenglong Mao, Shentian Li, Feilong Tan, Cao Li, Lei Jiao, Wenling Gu, Xin Luo\",\"doi\":\"10.1039/d5nh00476d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fe/NC single-atom catalysts have attracted extensive attention due to their maximal atomic utilization and tunable coordination environments. However, the structure-activity relationship of Fe single atoms in electrooxidation remains unclear. Herein, we report a defect engineering strategy to fine-tune the charge configuration of FeN<sub>4</sub> sites by introducing an axial N ligand and constructing FeN<sub>5</sub>-Fe<sub>1</sub>/NC. This asymmetric coordination environment enhances the catalytic activity for dopamine (DA) oxidation, delivering a 2.1-fold improvement over traditional Fe<sub>1</sub>/NC. The FeN<sub>5</sub>-Fe<sub>1</sub>/NC biosensor exhibits a wide linear detection range of 0.05-500 μM with a low detection limit of 23 nM for DA. Additionally, theoretical calculations confirm that axial N coordination modulates the electronic structure of the Fe center, optimizes intermediate adsorption, and lowers the energy barrier for DA oxidation. This work provides valuable insights into the rational design of single-atom catalysts for high-performance electrochemical sensing and fundamental mechanistic studies at the atomic scale.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00476d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00476d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Fe/NC单原子催化剂因其最大的原子利用率和可调的配位环境而受到广泛关注。然而,电氧化过程中单铁原子的构效关系尚不清楚。在此,我们报告了一种缺陷工程策略,通过引入轴向N配体和构建FeN5-Fe1/NC来微调FeN4位点的电荷配置。这种不对称配位环境增强了多巴胺(DA)氧化的催化活性,比传统的Fe1/NC提高了2.1倍。FeN5-Fe1/NC生物传感器具有0.05 ~ 500 μM的宽线性检测范围,DA检测限低至23 nM。此外,理论计算证实,轴向N配位调节了Fe中心的电子结构,优化了中间吸附,降低了DA氧化的能垒。这项工作为合理设计用于高性能电化学传感的单原子催化剂和原子尺度上的基本机理研究提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axial modulation of Fe sites for boosted electrochemical oxidation.

Fe/NC single-atom catalysts have attracted extensive attention due to their maximal atomic utilization and tunable coordination environments. However, the structure-activity relationship of Fe single atoms in electrooxidation remains unclear. Herein, we report a defect engineering strategy to fine-tune the charge configuration of FeN4 sites by introducing an axial N ligand and constructing FeN5-Fe1/NC. This asymmetric coordination environment enhances the catalytic activity for dopamine (DA) oxidation, delivering a 2.1-fold improvement over traditional Fe1/NC. The FeN5-Fe1/NC biosensor exhibits a wide linear detection range of 0.05-500 μM with a low detection limit of 23 nM for DA. Additionally, theoretical calculations confirm that axial N coordination modulates the electronic structure of the Fe center, optimizes intermediate adsorption, and lowers the energy barrier for DA oxidation. This work provides valuable insights into the rational design of single-atom catalysts for high-performance electrochemical sensing and fundamental mechanistic studies at the atomic scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信