微藻的三维全息流式细胞术测量:复杂旋转模式中角度恢复的策略。

IF 5.4 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2025-08-28 DOI:10.1039/d5lc00559k
Francesca Borrelli, Giusy Giugliano, Emilie Houliez, Jaromir Behal, Daniele Pirone, Leonilde Roselli, Angela Sardo, Valerio Zupo, Maria Costantini, Lisa Miccio, Pasquale Memmolo, Vittorio Bianco, Pietro Ferraro
{"title":"微藻的三维全息流式细胞术测量:复杂旋转模式中角度恢复的策略。","authors":"Francesca Borrelli, Giusy Giugliano, Emilie Houliez, Jaromir Behal, Daniele Pirone, Leonilde Roselli, Angela Sardo, Valerio Zupo, Maria Costantini, Lisa Miccio, Pasquale Memmolo, Vittorio Bianco, Pietro Ferraro","doi":"10.1039/d5lc00559k","DOIUrl":null,"url":null,"abstract":"<p><p>Marine ecosystems are in the spotlight, because environmental changes are threatening biodiversity and ecological functions. In this context, microalgae play key ecological roles both in planktonic and benthic ecosystems. Consequently, they are considered indispensable targets for global monitoring programs. However, due to their high spatial and temporal variability and to difficulties of species identification (still relying on microscopy observations), the assessment of roles played by these components of marine ecosystems is demanding. In addition, technologies for a 3D assessment of their complex morphology are scarcely available. Here, we present a comprehensive workflow for retrieving 3D information on microalgae with diverse geometries through holographic microscopy operating in flow-cytometry mode onboard a lab on a chip device. Depending on the rotation patterns of samples, a tailored approach is used to retrieve their rolling angles. We demonstrate the feasibility of measuring 3D data of various microalgae, contingent on the intrinsic optical properties of cells. Specifically, we show that for quasi-transparent and low-scattering microorganisms, the retrieved angles permit quantitative 3D tomographic refractive index (RI) mapping to be achieved, providing full characterization of the alga in terms of its inner structure and outer shape. Moreover, even in the most challenging scenarios, where microalgae exhibit high light absorption or strong scattering, quantitative 3D shape reconstructions of diatoms and dinoflagellates can be at least achieved. Finally, we compare our direct 3D measurements with 2D inferences of 3D properties, obtained using a commercially available microscopy system. The ability to non-invasively obtain 3D information on microalgae marks a fundamental advancement in the field, unlocking a wealth of novel biological insights for characterizing aquatic ecosystems.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D holographic flow cytometry measurements of microalgae: strategies for angle recovery in complex rotation patterns.\",\"authors\":\"Francesca Borrelli, Giusy Giugliano, Emilie Houliez, Jaromir Behal, Daniele Pirone, Leonilde Roselli, Angela Sardo, Valerio Zupo, Maria Costantini, Lisa Miccio, Pasquale Memmolo, Vittorio Bianco, Pietro Ferraro\",\"doi\":\"10.1039/d5lc00559k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marine ecosystems are in the spotlight, because environmental changes are threatening biodiversity and ecological functions. In this context, microalgae play key ecological roles both in planktonic and benthic ecosystems. Consequently, they are considered indispensable targets for global monitoring programs. However, due to their high spatial and temporal variability and to difficulties of species identification (still relying on microscopy observations), the assessment of roles played by these components of marine ecosystems is demanding. In addition, technologies for a 3D assessment of their complex morphology are scarcely available. Here, we present a comprehensive workflow for retrieving 3D information on microalgae with diverse geometries through holographic microscopy operating in flow-cytometry mode onboard a lab on a chip device. Depending on the rotation patterns of samples, a tailored approach is used to retrieve their rolling angles. We demonstrate the feasibility of measuring 3D data of various microalgae, contingent on the intrinsic optical properties of cells. Specifically, we show that for quasi-transparent and low-scattering microorganisms, the retrieved angles permit quantitative 3D tomographic refractive index (RI) mapping to be achieved, providing full characterization of the alga in terms of its inner structure and outer shape. Moreover, even in the most challenging scenarios, where microalgae exhibit high light absorption or strong scattering, quantitative 3D shape reconstructions of diatoms and dinoflagellates can be at least achieved. Finally, we compare our direct 3D measurements with 2D inferences of 3D properties, obtained using a commercially available microscopy system. The ability to non-invasively obtain 3D information on microalgae marks a fundamental advancement in the field, unlocking a wealth of novel biological insights for characterizing aquatic ecosystems.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1039/d5lc00559k\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00559k","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

海洋生态系统受到关注,因为环境变化正威胁着生物多样性和生态功能。在这种情况下,微藻在浮游和底栖生态系统中都发挥着关键的生态作用。因此,它们被认为是全球监测计划不可或缺的目标。然而,由于其高度的时空变异性和物种鉴定的困难(仍然依赖于显微镜观察),对海洋生态系统中这些组成部分所起作用的评估是艰巨的。此外,对其复杂形态进行3D评估的技术也很少。在这里,我们提出了一个全面的工作流程,通过在芯片设备上的实验室中以流式细胞术模式操作的全息显微镜,检索具有不同几何形状的微藻的3D信息。根据样本的旋转模式,一种定制的方法被用来检索他们的滚动角度。我们证明了测量各种微藻三维数据的可行性,这取决于细胞的固有光学特性。具体来说,我们表明,对于准透明和低散射的微生物,检索的角度允许实现定量的3D层析折射率(RI)映射,从其内部结构和外部形状方面提供藻类的完整表征。此外,即使在最具挑战性的情况下,微藻表现出高光吸收或强散射,硅藻和鞭毛藻的定量三维形状重建至少可以实现。最后,我们将直接的3D测量结果与使用市售显微镜系统获得的3D属性的2D推断结果进行了比较。非侵入性获取微藻三维信息的能力标志着该领域的根本性进步,为表征水生生态系统解锁了丰富的新颖生物学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D holographic flow cytometry measurements of microalgae: strategies for angle recovery in complex rotation patterns.

Marine ecosystems are in the spotlight, because environmental changes are threatening biodiversity and ecological functions. In this context, microalgae play key ecological roles both in planktonic and benthic ecosystems. Consequently, they are considered indispensable targets for global monitoring programs. However, due to their high spatial and temporal variability and to difficulties of species identification (still relying on microscopy observations), the assessment of roles played by these components of marine ecosystems is demanding. In addition, technologies for a 3D assessment of their complex morphology are scarcely available. Here, we present a comprehensive workflow for retrieving 3D information on microalgae with diverse geometries through holographic microscopy operating in flow-cytometry mode onboard a lab on a chip device. Depending on the rotation patterns of samples, a tailored approach is used to retrieve their rolling angles. We demonstrate the feasibility of measuring 3D data of various microalgae, contingent on the intrinsic optical properties of cells. Specifically, we show that for quasi-transparent and low-scattering microorganisms, the retrieved angles permit quantitative 3D tomographic refractive index (RI) mapping to be achieved, providing full characterization of the alga in terms of its inner structure and outer shape. Moreover, even in the most challenging scenarios, where microalgae exhibit high light absorption or strong scattering, quantitative 3D shape reconstructions of diatoms and dinoflagellates can be at least achieved. Finally, we compare our direct 3D measurements with 2D inferences of 3D properties, obtained using a commercially available microscopy system. The ability to non-invasively obtain 3D information on microalgae marks a fundamental advancement in the field, unlocking a wealth of novel biological insights for characterizing aquatic ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信