{"title":"揭示基于水凝胶的湿气发电中内部水通量和表面电位的优势:机理见解和性能增强。","authors":"Huping Yan, Liangyu Li, Chuanshuai Dong, Hao Wu, Ronghui Qi","doi":"10.1039/d5mh01123j","DOIUrl":null,"url":null,"abstract":"<p><p>Ambient humidity is an abundant yet underexploited energy reservoir, and its sustained conversion mechanisms remain elusive. This study employs single-layer, bilayer and ion-selective designs, in combination with Kelvin-probe force microscopy and molecular dynamics simulations, to delineate the fundamental physics of hydrogel-based moisture-enabled generators (MEGs). We demonstrate that continuous, directional water flux-rather than ion migration-governs electricity generation: the transport of 1 g of H<sub>2</sub>O through the hydrogel network yields ≈9.3 μA h, and vapor-phase migration alone sustains output over hours to days. Interrupting water transport (<i>e.g.</i>, <i>via</i> carbon-membrane insertion or device sealing) extinguishes the current instantly. Moreover, the open-circuit voltage scales with the internal surface-potential gradient: increasing this gradient from 31.3 mV to 810.7 mV elevates the output by 2.5 times. Guided by these findings, we introduced a co-optimization strategy that simultaneously enhances water transport and amplifies the potential gradient, thereby increasing the voltage from 0.1 to 0.6 V. Further H<sup>+</sup> modification increased the surface potential difference by 111.5 mV, improving the output by 30-50% and enabling sustained power under continuous water flow. Surface evaporation contributes solely by sustaining water flux, whereas triboelectric and streaming potential effects are negligible. This work establishes a quantitative mechanistic framework and delivers clear design principles for robust, high-efficiency MEGs, paving the way for self-powered sensors, portable electronics and distributed energy-harvesting platforms.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering internal water-flux and surface-potential dominance in hydrogel-based moisture-enabled power generation: mechanistic insights and performance enhancement.\",\"authors\":\"Huping Yan, Liangyu Li, Chuanshuai Dong, Hao Wu, Ronghui Qi\",\"doi\":\"10.1039/d5mh01123j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ambient humidity is an abundant yet underexploited energy reservoir, and its sustained conversion mechanisms remain elusive. This study employs single-layer, bilayer and ion-selective designs, in combination with Kelvin-probe force microscopy and molecular dynamics simulations, to delineate the fundamental physics of hydrogel-based moisture-enabled generators (MEGs). We demonstrate that continuous, directional water flux-rather than ion migration-governs electricity generation: the transport of 1 g of H<sub>2</sub>O through the hydrogel network yields ≈9.3 μA h, and vapor-phase migration alone sustains output over hours to days. Interrupting water transport (<i>e.g.</i>, <i>via</i> carbon-membrane insertion or device sealing) extinguishes the current instantly. Moreover, the open-circuit voltage scales with the internal surface-potential gradient: increasing this gradient from 31.3 mV to 810.7 mV elevates the output by 2.5 times. Guided by these findings, we introduced a co-optimization strategy that simultaneously enhances water transport and amplifies the potential gradient, thereby increasing the voltage from 0.1 to 0.6 V. Further H<sup>+</sup> modification increased the surface potential difference by 111.5 mV, improving the output by 30-50% and enabling sustained power under continuous water flow. Surface evaporation contributes solely by sustaining water flux, whereas triboelectric and streaming potential effects are negligible. This work establishes a quantitative mechanistic framework and delivers clear design principles for robust, high-efficiency MEGs, paving the way for self-powered sensors, portable electronics and distributed energy-harvesting platforms.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh01123j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01123j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Uncovering internal water-flux and surface-potential dominance in hydrogel-based moisture-enabled power generation: mechanistic insights and performance enhancement.
Ambient humidity is an abundant yet underexploited energy reservoir, and its sustained conversion mechanisms remain elusive. This study employs single-layer, bilayer and ion-selective designs, in combination with Kelvin-probe force microscopy and molecular dynamics simulations, to delineate the fundamental physics of hydrogel-based moisture-enabled generators (MEGs). We demonstrate that continuous, directional water flux-rather than ion migration-governs electricity generation: the transport of 1 g of H2O through the hydrogel network yields ≈9.3 μA h, and vapor-phase migration alone sustains output over hours to days. Interrupting water transport (e.g., via carbon-membrane insertion or device sealing) extinguishes the current instantly. Moreover, the open-circuit voltage scales with the internal surface-potential gradient: increasing this gradient from 31.3 mV to 810.7 mV elevates the output by 2.5 times. Guided by these findings, we introduced a co-optimization strategy that simultaneously enhances water transport and amplifies the potential gradient, thereby increasing the voltage from 0.1 to 0.6 V. Further H+ modification increased the surface potential difference by 111.5 mV, improving the output by 30-50% and enabling sustained power under continuous water flow. Surface evaporation contributes solely by sustaining water flux, whereas triboelectric and streaming potential effects are negligible. This work establishes a quantitative mechanistic framework and delivers clear design principles for robust, high-efficiency MEGs, paving the way for self-powered sensors, portable electronics and distributed energy-harvesting platforms.