Rouven Koch, Robert Drost, Peter Liljeroth and Jose L. Lado*,
{"title":"人工纳米级分子量子磁体中三重子激发的哈密顿学习。","authors":"Rouven Koch, Robert Drost, Peter Liljeroth and Jose L. Lado*, ","doi":"10.1021/acs.nanolett.5c02502","DOIUrl":null,"url":null,"abstract":"<p >Extracting the Hamiltonian parameters of nanoscale quantum magnets from experimental measurements is a significant challenge in quantum matter. Here we establish a machine learning strategy to extract the parameters of a spin Hamiltonian from inelastic spectroscopy with scanning tunneling microscopy, and we demonstrate this methodology experimentally with an artificial nanoscale molecular magnet based on cobalt phthalocyanine (CoPC) molecules on NbSe<sub>2</sub>. We show that this technique allows us to extract the Hamiltonian parameters of a quantum magnet from the differential conductance, including the substrate-induced spatial variation of the exchange couplings. Our methodology leverages a machine learning algorithm trained on exact quantum many-body simulations with tensor networks of finite quantum magnets, leading to a methodology that predicts the Hamiltonian parameters of CoPC quantum magnets of arbitrary size. Our results demonstrate how quantum many-body methods and machine learning enable us to learn a microscopic description of nanoscale quantum many-body systems with scanning tunneling spectroscopy.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 36","pages":"13435–13440"},"PeriodicalIF":9.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c02502","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian Learning of Triplon Excitations in an Artificial Nanoscale Molecular Quantum Magnet\",\"authors\":\"Rouven Koch, Robert Drost, Peter Liljeroth and Jose L. Lado*, \",\"doi\":\"10.1021/acs.nanolett.5c02502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Extracting the Hamiltonian parameters of nanoscale quantum magnets from experimental measurements is a significant challenge in quantum matter. Here we establish a machine learning strategy to extract the parameters of a spin Hamiltonian from inelastic spectroscopy with scanning tunneling microscopy, and we demonstrate this methodology experimentally with an artificial nanoscale molecular magnet based on cobalt phthalocyanine (CoPC) molecules on NbSe<sub>2</sub>. We show that this technique allows us to extract the Hamiltonian parameters of a quantum magnet from the differential conductance, including the substrate-induced spatial variation of the exchange couplings. Our methodology leverages a machine learning algorithm trained on exact quantum many-body simulations with tensor networks of finite quantum magnets, leading to a methodology that predicts the Hamiltonian parameters of CoPC quantum magnets of arbitrary size. Our results demonstrate how quantum many-body methods and machine learning enable us to learn a microscopic description of nanoscale quantum many-body systems with scanning tunneling spectroscopy.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 36\",\"pages\":\"13435–13440\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c02502\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02502\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02502","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hamiltonian Learning of Triplon Excitations in an Artificial Nanoscale Molecular Quantum Magnet
Extracting the Hamiltonian parameters of nanoscale quantum magnets from experimental measurements is a significant challenge in quantum matter. Here we establish a machine learning strategy to extract the parameters of a spin Hamiltonian from inelastic spectroscopy with scanning tunneling microscopy, and we demonstrate this methodology experimentally with an artificial nanoscale molecular magnet based on cobalt phthalocyanine (CoPC) molecules on NbSe2. We show that this technique allows us to extract the Hamiltonian parameters of a quantum magnet from the differential conductance, including the substrate-induced spatial variation of the exchange couplings. Our methodology leverages a machine learning algorithm trained on exact quantum many-body simulations with tensor networks of finite quantum magnets, leading to a methodology that predicts the Hamiltonian parameters of CoPC quantum magnets of arbitrary size. Our results demonstrate how quantum many-body methods and machine learning enable us to learn a microscopic description of nanoscale quantum many-body systems with scanning tunneling spectroscopy.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.