人工纳米级分子量子磁体中三重子激发的哈密顿学习。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rouven Koch, Robert Drost, Peter Liljeroth and Jose L. Lado*, 
{"title":"人工纳米级分子量子磁体中三重子激发的哈密顿学习。","authors":"Rouven Koch,&nbsp;Robert Drost,&nbsp;Peter Liljeroth and Jose L. Lado*,&nbsp;","doi":"10.1021/acs.nanolett.5c02502","DOIUrl":null,"url":null,"abstract":"<p >Extracting the Hamiltonian parameters of nanoscale quantum magnets from experimental measurements is a significant challenge in quantum matter. Here we establish a machine learning strategy to extract the parameters of a spin Hamiltonian from inelastic spectroscopy with scanning tunneling microscopy, and we demonstrate this methodology experimentally with an artificial nanoscale molecular magnet based on cobalt phthalocyanine (CoPC) molecules on NbSe<sub>2</sub>. We show that this technique allows us to extract the Hamiltonian parameters of a quantum magnet from the differential conductance, including the substrate-induced spatial variation of the exchange couplings. Our methodology leverages a machine learning algorithm trained on exact quantum many-body simulations with tensor networks of finite quantum magnets, leading to a methodology that predicts the Hamiltonian parameters of CoPC quantum magnets of arbitrary size. Our results demonstrate how quantum many-body methods and machine learning enable us to learn a microscopic description of nanoscale quantum many-body systems with scanning tunneling spectroscopy.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 36","pages":"13435–13440"},"PeriodicalIF":9.1000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c02502","citationCount":"0","resultStr":"{\"title\":\"Hamiltonian Learning of Triplon Excitations in an Artificial Nanoscale Molecular Quantum Magnet\",\"authors\":\"Rouven Koch,&nbsp;Robert Drost,&nbsp;Peter Liljeroth and Jose L. Lado*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c02502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Extracting the Hamiltonian parameters of nanoscale quantum magnets from experimental measurements is a significant challenge in quantum matter. Here we establish a machine learning strategy to extract the parameters of a spin Hamiltonian from inelastic spectroscopy with scanning tunneling microscopy, and we demonstrate this methodology experimentally with an artificial nanoscale molecular magnet based on cobalt phthalocyanine (CoPC) molecules on NbSe<sub>2</sub>. We show that this technique allows us to extract the Hamiltonian parameters of a quantum magnet from the differential conductance, including the substrate-induced spatial variation of the exchange couplings. Our methodology leverages a machine learning algorithm trained on exact quantum many-body simulations with tensor networks of finite quantum magnets, leading to a methodology that predicts the Hamiltonian parameters of CoPC quantum magnets of arbitrary size. Our results demonstrate how quantum many-body methods and machine learning enable us to learn a microscopic description of nanoscale quantum many-body systems with scanning tunneling spectroscopy.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 36\",\"pages\":\"13435–13440\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c02502\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02502\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02502","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从实验测量中提取纳米级量子磁体的哈密顿参数是量子物质研究中的一个重大挑战。本文建立了一种机器学习策略,利用扫描隧道显微镜从非弹性光谱中提取自旋哈密顿量的参数,并通过基于NbSe2上酞菁钴(CoPC)分子的人工纳米级分子磁铁实验验证了该方法。我们表明,这种技术允许我们从微分电导中提取量子磁体的哈密顿参数,包括衬底诱导的交换耦合的空间变化。我们的方法利用了一种机器学习算法,该算法经过了有限量子磁体张量网络的精确量子多体模拟训练,从而得出了一种预测任意大小的CoPC量子磁体的哈密顿参数的方法。我们的研究结果证明了量子多体方法和机器学习如何使我们能够通过扫描隧道光谱学习纳米级量子多体系统的微观描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamiltonian Learning of Triplon Excitations in an Artificial Nanoscale Molecular Quantum Magnet

Extracting the Hamiltonian parameters of nanoscale quantum magnets from experimental measurements is a significant challenge in quantum matter. Here we establish a machine learning strategy to extract the parameters of a spin Hamiltonian from inelastic spectroscopy with scanning tunneling microscopy, and we demonstrate this methodology experimentally with an artificial nanoscale molecular magnet based on cobalt phthalocyanine (CoPC) molecules on NbSe2. We show that this technique allows us to extract the Hamiltonian parameters of a quantum magnet from the differential conductance, including the substrate-induced spatial variation of the exchange couplings. Our methodology leverages a machine learning algorithm trained on exact quantum many-body simulations with tensor networks of finite quantum magnets, leading to a methodology that predicts the Hamiltonian parameters of CoPC quantum magnets of arbitrary size. Our results demonstrate how quantum many-body methods and machine learning enable us to learn a microscopic description of nanoscale quantum many-body systems with scanning tunneling spectroscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信