DNA折纸张力传感器(DOTS)用于流体膜间连接处的单分子力测量。

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sarah Al Abdullatif, Alexander K. Foote, Yuesong Hu, Jhordan Rogers and Khalid Salaita*, 
{"title":"DNA折纸张力传感器(DOTS)用于流体膜间连接处的单分子力测量。","authors":"Sarah Al Abdullatif,&nbsp;Alexander K. Foote,&nbsp;Yuesong Hu,&nbsp;Jhordan Rogers and Khalid Salaita*,&nbsp;","doi":"10.1021/acs.nanolett.5c02130","DOIUrl":null,"url":null,"abstract":"<p >A key event in triggering adaptive immunity is the binding of a T cell receptor (TCR) to its antigen at the T cell–target cell interface. Mechanical forces are critical for TCR–antigen interactions, where piconewton (pN) forces modulate immune responses. A major challenge in studying these interactions is quantifying forces at the single-molecule scale, as T cells can activate in response to just 1–10 antigen molecules. To address this, we developed single-molecule DNA origami tension sensors (smDOTS) for high-resolution force mapping. Our design includes spectral fingerprint density reporters, multiple quenchers for extended force dynamics monitoring, and tunable cholesterol anchors for controlled mobility. We report unprecedented measurements of TCR–antigen forces at fluid membranes, detecting forces with magnitudes of 8 to 19 pN, and tracking ligand translocation. Multiplexing enabled the simultaneous imaging of sensors with different force thresholds. This approach could further reveal bond lifetimes and force dynamics, deepening our understanding of TCR-mediated signaling.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 36","pages":"13419–13427"},"PeriodicalIF":9.1000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c02130","citationCount":"0","resultStr":"{\"title\":\"DNA Origami Tension Sensors (DOTS) for Single-Molecule Force Measurements at Fluid Intermembrane Junctions\",\"authors\":\"Sarah Al Abdullatif,&nbsp;Alexander K. Foote,&nbsp;Yuesong Hu,&nbsp;Jhordan Rogers and Khalid Salaita*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c02130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A key event in triggering adaptive immunity is the binding of a T cell receptor (TCR) to its antigen at the T cell–target cell interface. Mechanical forces are critical for TCR–antigen interactions, where piconewton (pN) forces modulate immune responses. A major challenge in studying these interactions is quantifying forces at the single-molecule scale, as T cells can activate in response to just 1–10 antigen molecules. To address this, we developed single-molecule DNA origami tension sensors (smDOTS) for high-resolution force mapping. Our design includes spectral fingerprint density reporters, multiple quenchers for extended force dynamics monitoring, and tunable cholesterol anchors for controlled mobility. We report unprecedented measurements of TCR–antigen forces at fluid membranes, detecting forces with magnitudes of 8 to 19 pN, and tracking ligand translocation. Multiplexing enabled the simultaneous imaging of sensors with different force thresholds. This approach could further reveal bond lifetimes and force dynamics, deepening our understanding of TCR-mediated signaling.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 36\",\"pages\":\"13419–13427\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c02130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02130\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02130","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

触发适应性免疫的一个关键事件是T细胞受体(TCR)在T细胞-靶细胞界面与其抗原结合。机械力对tcr -抗原相互作用至关重要,其中皮牛顿(pN)力调节免疫反应。研究这些相互作用的一个主要挑战是在单分子尺度上量化力,因为T细胞只能对1-10个抗原分子做出反应。为了解决这个问题,我们开发了用于高分辨率力映射的单分子DNA折纸张力传感器(smDOTS)。我们的设计包括光谱指纹密度报告,用于扩展力动力学监测的多个淬灭器,以及用于控制移动的可调胆固醇锚。我们报道了前所未有的tcr -抗原在流体膜上的力的测量,检测到8到19 pN的力,并跟踪配体易位。多路复用使具有不同力阈值的传感器能够同时成像。这种方法可以进一步揭示键寿命和力动力学,加深我们对tcr介导的信号传导的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA Origami Tension Sensors (DOTS) for Single-Molecule Force Measurements at Fluid Intermembrane Junctions

A key event in triggering adaptive immunity is the binding of a T cell receptor (TCR) to its antigen at the T cell–target cell interface. Mechanical forces are critical for TCR–antigen interactions, where piconewton (pN) forces modulate immune responses. A major challenge in studying these interactions is quantifying forces at the single-molecule scale, as T cells can activate in response to just 1–10 antigen molecules. To address this, we developed single-molecule DNA origami tension sensors (smDOTS) for high-resolution force mapping. Our design includes spectral fingerprint density reporters, multiple quenchers for extended force dynamics monitoring, and tunable cholesterol anchors for controlled mobility. We report unprecedented measurements of TCR–antigen forces at fluid membranes, detecting forces with magnitudes of 8 to 19 pN, and tracking ligand translocation. Multiplexing enabled the simultaneous imaging of sensors with different force thresholds. This approach could further reveal bond lifetimes and force dynamics, deepening our understanding of TCR-mediated signaling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信