在CaBi2Ta2O9基织构陶瓷中诱导优异的电学性能。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Shi, Mingyue Mo, Qi Hu, Zhi Tan, Shangyi Guan, Liang Xu, Jie Xing, Qiang Chen
{"title":"在CaBi2Ta2O9基织构陶瓷中诱导优异的电学性能。","authors":"Wei Shi, Mingyue Mo, Qi Hu, Zhi Tan, Shangyi Guan, Liang Xu, Jie Xing, Qiang Chen","doi":"10.1039/d5mh01252j","DOIUrl":null,"url":null,"abstract":"<p><p>Bismuth-layered structure ferroelectrics (BLSFs), exemplified by CaBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> (CBTa), exhibit exceptional thermal stability at high temperatures with a high Curie temperature. This attribute renders them highly promising candidates for piezoelectric sensors, transducers, non-volatile ferroelectric memory, <i>etc.</i> working in extreme environments. However, CBTa ceramic suffers from the following intrinsic limitations: spontaneous polarization confined within the <i>ab</i>-plane of the unit cell and a large coercive field, leading to severely suppressed piezoelectric activity (<i>d</i><sub>33</sub> ≈ 5.4 pC N<sup>-1</sup>). To address these challenges, a synergistic strategy integrating ion doping and hot forging is proposed to fabricate textured CBTa-based ceramics. Systematic characterization reveals that hot forging induces preferential grain orientation, effectively aligning polar domains while maintaining the layered perovskite structure. This optimization achieves significant enhancement in piezoelectric response (<i>d</i><sub>33</sub> ∼ 21.8 pC N<sup>-1</sup>) and direct-current resistivity (<i>ρ</i> > 1 × 10<sup>7</sup> Ω cm at 600 °C) without compromising <i>T</i><sub>C</sub> (∼922 °C). Notably, the textured ceramics retain 95% of their initial piezoelectric performance after depoling at 900 °C for 2 h, underscoring their outstanding thermal stability. This work establishes a microstructure-engineering paradigm for tailoring electromechanical properties in BLSFs, bridging the gap between intrinsic material limitations and application-driven performance requirements.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inducing superior electrical performances in textured CaBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> based ceramics.\",\"authors\":\"Wei Shi, Mingyue Mo, Qi Hu, Zhi Tan, Shangyi Guan, Liang Xu, Jie Xing, Qiang Chen\",\"doi\":\"10.1039/d5mh01252j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bismuth-layered structure ferroelectrics (BLSFs), exemplified by CaBi<sub>2</sub>Ta<sub>2</sub>O<sub>9</sub> (CBTa), exhibit exceptional thermal stability at high temperatures with a high Curie temperature. This attribute renders them highly promising candidates for piezoelectric sensors, transducers, non-volatile ferroelectric memory, <i>etc.</i> working in extreme environments. However, CBTa ceramic suffers from the following intrinsic limitations: spontaneous polarization confined within the <i>ab</i>-plane of the unit cell and a large coercive field, leading to severely suppressed piezoelectric activity (<i>d</i><sub>33</sub> ≈ 5.4 pC N<sup>-1</sup>). To address these challenges, a synergistic strategy integrating ion doping and hot forging is proposed to fabricate textured CBTa-based ceramics. Systematic characterization reveals that hot forging induces preferential grain orientation, effectively aligning polar domains while maintaining the layered perovskite structure. This optimization achieves significant enhancement in piezoelectric response (<i>d</i><sub>33</sub> ∼ 21.8 pC N<sup>-1</sup>) and direct-current resistivity (<i>ρ</i> > 1 × 10<sup>7</sup> Ω cm at 600 °C) without compromising <i>T</i><sub>C</sub> (∼922 °C). Notably, the textured ceramics retain 95% of their initial piezoelectric performance after depoling at 900 °C for 2 h, underscoring their outstanding thermal stability. This work establishes a microstructure-engineering paradigm for tailoring electromechanical properties in BLSFs, bridging the gap between intrinsic material limitations and application-driven performance requirements.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5mh01252j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01252j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以CaBi2Ta2O9 (CBTa)为代表的铋层结构铁电体(BLSFs)在高温和高居里温度下表现出优异的热稳定性。这一特性使它们成为在极端环境下工作的压电传感器、换能器、非易失性铁电存储器等极有希望的候选者。然而,CBTa陶瓷存在以下固有局限性:自发极化局限于单晶胞的ab平面内,外加较大的矫顽力场,导致压电活性严重抑制(d33≈5.4 pC N-1)。为了解决这些问题,提出了一种离子掺杂和热锻相结合的协同策略来制备cbta基织构陶瓷。系统表征表明,热锻造诱导晶粒优先取向,有效对齐极性畴,同时保持层状钙钛矿结构。该优化实现了压电响应(d33 ~ 21.8 pC N-1)和直流电阻率(ρ > 1 × 107 Ω cm, 600°C)的显著增强,而不影响TC(~ 922°C)。值得注意的是,在900°C下去极化2小时后,纹理陶瓷保留了95%的初始压电性能,突出了其出色的热稳定性。这项工作建立了一种微结构工程范式,用于定制blsf的机电性能,弥合了内在材料限制与应用驱动性能要求之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inducing superior electrical performances in textured CaBi2Ta2O9 based ceramics.

Bismuth-layered structure ferroelectrics (BLSFs), exemplified by CaBi2Ta2O9 (CBTa), exhibit exceptional thermal stability at high temperatures with a high Curie temperature. This attribute renders them highly promising candidates for piezoelectric sensors, transducers, non-volatile ferroelectric memory, etc. working in extreme environments. However, CBTa ceramic suffers from the following intrinsic limitations: spontaneous polarization confined within the ab-plane of the unit cell and a large coercive field, leading to severely suppressed piezoelectric activity (d33 ≈ 5.4 pC N-1). To address these challenges, a synergistic strategy integrating ion doping and hot forging is proposed to fabricate textured CBTa-based ceramics. Systematic characterization reveals that hot forging induces preferential grain orientation, effectively aligning polar domains while maintaining the layered perovskite structure. This optimization achieves significant enhancement in piezoelectric response (d33 ∼ 21.8 pC N-1) and direct-current resistivity (ρ > 1 × 107 Ω cm at 600 °C) without compromising TC (∼922 °C). Notably, the textured ceramics retain 95% of their initial piezoelectric performance after depoling at 900 °C for 2 h, underscoring their outstanding thermal stability. This work establishes a microstructure-engineering paradigm for tailoring electromechanical properties in BLSFs, bridging the gap between intrinsic material limitations and application-driven performance requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信