具有超宽量程和高灵敏度的仿生离子电子压力传感器。

IF 9.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Zijun Pan, , , Bolong Qin, , , Zhanghao Lin, , , Haowei Kong, , , Senrong Ye, , , Haohan Wu, , , Chenchen Bian, , , Gengzhe Shen*, , , Yeqing Chen, , , Chi Zhang, , , Weijia Yang, , and , Xin He*, 
{"title":"具有超宽量程和高灵敏度的仿生离子电子压力传感器。","authors":"Zijun Pan,&nbsp;, ,&nbsp;Bolong Qin,&nbsp;, ,&nbsp;Zhanghao Lin,&nbsp;, ,&nbsp;Haowei Kong,&nbsp;, ,&nbsp;Senrong Ye,&nbsp;, ,&nbsp;Haohan Wu,&nbsp;, ,&nbsp;Chenchen Bian,&nbsp;, ,&nbsp;Gengzhe Shen*,&nbsp;, ,&nbsp;Yeqing Chen,&nbsp;, ,&nbsp;Chi Zhang,&nbsp;, ,&nbsp;Weijia Yang,&nbsp;, and ,&nbsp;Xin He*,&nbsp;","doi":"10.1021/acssensors.5c02041","DOIUrl":null,"url":null,"abstract":"<p >The trade-off between sensitivity and detection range has limited the performance of flexible pressure sensors, hindering their deployment in advanced human–machine interfaces and precision healthcare monitoring. Inspired by the ion-mediated electrogenesis of electric eels, we report a bioinspired iontronic pressure sensor (IPS) that overcomes this bottleneck by coupling MXene-functionalized electrodes with a hierarchical silica aerogel/ionic liquid (ILA) dielectric. This architecture enables pressure-driven, reversible ion migration within the porous dielectric and enhances electrical double-layer (EDL) formation at the electrode-dielectric interface. As a result, the IPS delivers an ultrawide detection range of up to 5.8 MPa, a high sensitivity of 26,845 kPa<sup>–1</sup> within 400 kPa, rapid response/recovery times of 5 ms/6 ms, outstanding durability over 10,000 loading cycles, and intrinsic flame retardancy. These distinctive capabilities allow monitoring of subtle physiological signals and complex human motions even under harsh conditions. This bioinspired approach enables the development of advanced flexible pressure sensors, thereby paving the way for advancements in adaptive robotics, intelligent wearables, and advanced healthcare diagnostics.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 9","pages":"6991–7001"},"PeriodicalIF":9.1000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinspired Iontronic Pressure Sensor with Ultrawide Range and High Sensitivity\",\"authors\":\"Zijun Pan,&nbsp;, ,&nbsp;Bolong Qin,&nbsp;, ,&nbsp;Zhanghao Lin,&nbsp;, ,&nbsp;Haowei Kong,&nbsp;, ,&nbsp;Senrong Ye,&nbsp;, ,&nbsp;Haohan Wu,&nbsp;, ,&nbsp;Chenchen Bian,&nbsp;, ,&nbsp;Gengzhe Shen*,&nbsp;, ,&nbsp;Yeqing Chen,&nbsp;, ,&nbsp;Chi Zhang,&nbsp;, ,&nbsp;Weijia Yang,&nbsp;, and ,&nbsp;Xin He*,&nbsp;\",\"doi\":\"10.1021/acssensors.5c02041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The trade-off between sensitivity and detection range has limited the performance of flexible pressure sensors, hindering their deployment in advanced human–machine interfaces and precision healthcare monitoring. Inspired by the ion-mediated electrogenesis of electric eels, we report a bioinspired iontronic pressure sensor (IPS) that overcomes this bottleneck by coupling MXene-functionalized electrodes with a hierarchical silica aerogel/ionic liquid (ILA) dielectric. This architecture enables pressure-driven, reversible ion migration within the porous dielectric and enhances electrical double-layer (EDL) formation at the electrode-dielectric interface. As a result, the IPS delivers an ultrawide detection range of up to 5.8 MPa, a high sensitivity of 26,845 kPa<sup>–1</sup> within 400 kPa, rapid response/recovery times of 5 ms/6 ms, outstanding durability over 10,000 loading cycles, and intrinsic flame retardancy. These distinctive capabilities allow monitoring of subtle physiological signals and complex human motions even under harsh conditions. This bioinspired approach enables the development of advanced flexible pressure sensors, thereby paving the way for advancements in adaptive robotics, intelligent wearables, and advanced healthcare diagnostics.</p>\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"10 9\",\"pages\":\"6991–7001\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssensors.5c02041\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.5c02041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

灵敏度和检测范围之间的权衡限制了柔性压力传感器的性能,阻碍了它们在高级人机界面和精确医疗监测中的部署。受离子介导的电鳗电生成的启发,我们报道了一种生物启发离子电子压力传感器(IPS),该传感器通过将mxene功能化电极与分层二氧化硅气凝胶/离子液体(ILA)电介质耦合来克服这一瓶颈。这种结构可以在多孔介质内实现压力驱动的可逆离子迁移,并增强电极-介质界面上的双电层(EDL)形成。因此,IPS提供了高达5.8 MPa的超宽检测范围,400 kPa内26,845 kPa-1的高灵敏度,5 ms/6 ms的快速响应/恢复时间,超过10,000次加载循环的出色耐用性,以及固有的阻燃性。这些独特的功能允许监测微妙的生理信号和复杂的人体运动,即使在恶劣的条件下。这种受生物启发的方法能够开发先进的柔性压力传感器,从而为自适应机器人技术、智能可穿戴设备和先进医疗诊断技术的发展铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioinspired Iontronic Pressure Sensor with Ultrawide Range and High Sensitivity

Bioinspired Iontronic Pressure Sensor with Ultrawide Range and High Sensitivity

The trade-off between sensitivity and detection range has limited the performance of flexible pressure sensors, hindering their deployment in advanced human–machine interfaces and precision healthcare monitoring. Inspired by the ion-mediated electrogenesis of electric eels, we report a bioinspired iontronic pressure sensor (IPS) that overcomes this bottleneck by coupling MXene-functionalized electrodes with a hierarchical silica aerogel/ionic liquid (ILA) dielectric. This architecture enables pressure-driven, reversible ion migration within the porous dielectric and enhances electrical double-layer (EDL) formation at the electrode-dielectric interface. As a result, the IPS delivers an ultrawide detection range of up to 5.8 MPa, a high sensitivity of 26,845 kPa–1 within 400 kPa, rapid response/recovery times of 5 ms/6 ms, outstanding durability over 10,000 loading cycles, and intrinsic flame retardancy. These distinctive capabilities allow monitoring of subtle physiological signals and complex human motions even under harsh conditions. This bioinspired approach enables the development of advanced flexible pressure sensors, thereby paving the way for advancements in adaptive robotics, intelligent wearables, and advanced healthcare diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信