开发具有抗癌和抗菌性能的生物相容性壳聚糖稳定金纳米颗粒:计算和实验方法。

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS
Siva Sankar Sana*, Rimi Mukherjee, Tae Hwan Oh, Aisha Tufail, Gaurav Das, Seong-Cheol Kim and Amit Dubey*, 
{"title":"开发具有抗癌和抗菌性能的生物相容性壳聚糖稳定金纳米颗粒:计算和实验方法。","authors":"Siva Sankar Sana*,&nbsp;Rimi Mukherjee,&nbsp;Tae Hwan Oh,&nbsp;Aisha Tufail,&nbsp;Gaurav Das,&nbsp;Seong-Cheol Kim and Amit Dubey*,&nbsp;","doi":"10.1021/acsabm.5c01281","DOIUrl":null,"url":null,"abstract":"<p >The present study reports an eco-friendly route for the synthesis of chitosan-stabilized gold nanoparticles (Cs@AuNPs) using <i>Perilla frutescens</i> leaf extract and their dual anticancer and antimicrobial activities. The nanoparticles were comprehensively characterized by ultraviolet–visible (UV–vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ζ-potential analysis. Cs@AuNPs exhibited a strong surface plasmon resonance peak at 550 nm, face-centered cubic crystallinity with a predominant (111) plane, spherical morphology, particle size ranging from 5–30 nm, and a positive surface charge. Biological assays revealed selective anticancer activity against MCF-7 breast cancer cells with an IC<sub>50</sub> of ∼100 μg/mL, while sparing normal MCF-10A cells (&gt;80% viability). Mechanistic studies confirmed significant reactive oxygen species (ROS)-mediated apoptosis, nuclear fragmentation, and regulation of apoptotic proteins. Cs@AuNPs also displayed potent antibacterial activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, with inhibition zones of up to 15 mm. Computational investigations supported these findings. Molecular docking demonstrated strong binding affinities with the HER2 kinase (−284.3 kcal/mol) and <i>Candida albicans</i> regulator proteins (−343.4 kcal/mol). Molecular dynamics simulations indicated complex stability, while binding free energy calculations (MM/GBSA) with entropy corrections yielded favorable values (−30 to −45 kcal/mol). Density functional theory (DFT) further validated electronic stability, and ADMET profiling predicted high intestinal absorption, nongenotoxicity, and environmental safety. Together, these experimental and computational insights highlight Cs@AuNPs as a biocompatible, sustainable nanoplatform with promising applications in cancer therapy and antimicrobial treatment.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 9","pages":"8352–8378"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing Biocompatible Chitosan-Stabilized Gold Nanoparticles with Anticancer and Antimicrobial Properties: A Computational and Experimental Approach\",\"authors\":\"Siva Sankar Sana*,&nbsp;Rimi Mukherjee,&nbsp;Tae Hwan Oh,&nbsp;Aisha Tufail,&nbsp;Gaurav Das,&nbsp;Seong-Cheol Kim and Amit Dubey*,&nbsp;\",\"doi\":\"10.1021/acsabm.5c01281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The present study reports an eco-friendly route for the synthesis of chitosan-stabilized gold nanoparticles (Cs@AuNPs) using <i>Perilla frutescens</i> leaf extract and their dual anticancer and antimicrobial activities. The nanoparticles were comprehensively characterized by ultraviolet–visible (UV–vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ζ-potential analysis. Cs@AuNPs exhibited a strong surface plasmon resonance peak at 550 nm, face-centered cubic crystallinity with a predominant (111) plane, spherical morphology, particle size ranging from 5–30 nm, and a positive surface charge. Biological assays revealed selective anticancer activity against MCF-7 breast cancer cells with an IC<sub>50</sub> of ∼100 μg/mL, while sparing normal MCF-10A cells (&gt;80% viability). Mechanistic studies confirmed significant reactive oxygen species (ROS)-mediated apoptosis, nuclear fragmentation, and regulation of apoptotic proteins. Cs@AuNPs also displayed potent antibacterial activity against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>, with inhibition zones of up to 15 mm. Computational investigations supported these findings. Molecular docking demonstrated strong binding affinities with the HER2 kinase (−284.3 kcal/mol) and <i>Candida albicans</i> regulator proteins (−343.4 kcal/mol). Molecular dynamics simulations indicated complex stability, while binding free energy calculations (MM/GBSA) with entropy corrections yielded favorable values (−30 to −45 kcal/mol). Density functional theory (DFT) further validated electronic stability, and ADMET profiling predicted high intestinal absorption, nongenotoxicity, and environmental safety. Together, these experimental and computational insights highlight Cs@AuNPs as a biocompatible, sustainable nanoplatform with promising applications in cancer therapy and antimicrobial treatment.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"8 9\",\"pages\":\"8352–8378\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsabm.5c01281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsabm.5c01281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本研究报道了一种利用紫苏叶提取物及其抗癌和抗菌双重活性合成壳聚糖稳定金纳米粒子的环保途径(Cs@AuNPs)。采用紫外可见光谱(UV-vis)、x射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和ζ电位分析对纳米颗粒进行了全面表征。Cs@AuNPs在550 nm处表现出强烈的表面等离子体共振峰,面心立方结晶度以(111)平面为主,呈球形,粒径在5-30 nm之间,表面带正电荷。生物学试验显示,MCF-7乳腺癌细胞具有选择性抗癌活性,IC50为~ 100 μg/mL,同时保留正常MCF-10A细胞(bbb80 %存活率)。机制研究证实了活性氧(ROS)介导的细胞凋亡、核断裂和凋亡蛋白的调节。Cs@AuNPs也显示出对大肠杆菌和金黄色葡萄球菌的有效抗菌活性,其抑制区可达15 mm。计算研究支持了这些发现。分子对接显示与HER2激酶(-284.3 kcal/mol)和白色念珠菌调节蛋白(-343.4 kcal/mol)有很强的结合亲和力。分子动力学模拟显示出复杂的稳定性,而结合自由能计算(MM/GBSA)的熵修正得到了有利的值(-30 ~ -45 kcal/mol)。密度泛函理论(DFT)进一步验证了电子稳定性,ADMET分析预测了高肠道吸收、非遗传毒性和环境安全性。总之,这些实验和计算的见解突出了Cs@AuNPs作为一个生物相容性的、可持续的纳米平台,在癌症治疗和抗菌治疗中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Developing Biocompatible Chitosan-Stabilized Gold Nanoparticles with Anticancer and Antimicrobial Properties: A Computational and Experimental Approach

Developing Biocompatible Chitosan-Stabilized Gold Nanoparticles with Anticancer and Antimicrobial Properties: A Computational and Experimental Approach

The present study reports an eco-friendly route for the synthesis of chitosan-stabilized gold nanoparticles (Cs@AuNPs) using Perilla frutescens leaf extract and their dual anticancer and antimicrobial activities. The nanoparticles were comprehensively characterized by ultraviolet–visible (UV–vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ζ-potential analysis. Cs@AuNPs exhibited a strong surface plasmon resonance peak at 550 nm, face-centered cubic crystallinity with a predominant (111) plane, spherical morphology, particle size ranging from 5–30 nm, and a positive surface charge. Biological assays revealed selective anticancer activity against MCF-7 breast cancer cells with an IC50 of ∼100 μg/mL, while sparing normal MCF-10A cells (>80% viability). Mechanistic studies confirmed significant reactive oxygen species (ROS)-mediated apoptosis, nuclear fragmentation, and regulation of apoptotic proteins. Cs@AuNPs also displayed potent antibacterial activity against Escherichia coli and Staphylococcus aureus, with inhibition zones of up to 15 mm. Computational investigations supported these findings. Molecular docking demonstrated strong binding affinities with the HER2 kinase (−284.3 kcal/mol) and Candida albicans regulator proteins (−343.4 kcal/mol). Molecular dynamics simulations indicated complex stability, while binding free energy calculations (MM/GBSA) with entropy corrections yielded favorable values (−30 to −45 kcal/mol). Density functional theory (DFT) further validated electronic stability, and ADMET profiling predicted high intestinal absorption, nongenotoxicity, and environmental safety. Together, these experimental and computational insights highlight Cs@AuNPs as a biocompatible, sustainable nanoplatform with promising applications in cancer therapy and antimicrobial treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信