疏水基团和功能聚合物在纤维素纳米晶体表面的接枝改性研究。

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Richard Fuku, Yang Liu, Paolo Giuliana, Tianjia Yang, Devika Gopakumar, Edmond C. N. Wong, Paul A. E. Piunno, Ulrich J. Krull, Landon J. Edgar and Mitchell A. Winnik*, 
{"title":"疏水基团和功能聚合物在纤维素纳米晶体表面的接枝改性研究。","authors":"Richard Fuku,&nbsp;Yang Liu,&nbsp;Paolo Giuliana,&nbsp;Tianjia Yang,&nbsp;Devika Gopakumar,&nbsp;Edmond C. N. Wong,&nbsp;Paul A. E. Piunno,&nbsp;Ulrich J. Krull,&nbsp;Landon J. Edgar and Mitchell A. Winnik*,&nbsp;","doi":"10.1021/acs.biomac.5c01194","DOIUrl":null,"url":null,"abstract":"<p >Cellulose nanocrystals (CNCs) are promising nanomaterials for biomedical applications owing to their biocompatibility, low toxicity, and versatile surface chemistry. However, efficient surface modification of CNCs with hydrophobic moieties and functional polymers remains challenging under mild aqueous conditions. Herein, we present an aqueous-phase “grafting-to” strategy that enables orthogonal conjugation of meso-tetra(4-carboxyphenyl)porphine (TCPP) and polyethylene glycol (PEG)-based polymers using a heterobifunctional linker. Aldehyde-functionalized CNCs were modified with dibenzocyclooctyne (DBCO)-amine via reductive amination to introduce two key functionalities: a secondary amine for amide coupling and a strained alkyne for copper-free click chemistry. We hypothesize that the hydrophobic environment surrounding the DBCO-modified CNC surface facilitates the noncovalent association of hydrophobic TCPP molecules, thereby significantly enhancing the conjugation reaction in water via the hydrophobic effect. The resulting dual-functionalized CNCs exhibited &gt;1 month colloidal stability in water, reduced nonspecific protein adsorption by over 86% after PEGylation, and presented a versatile platform for biological applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 9","pages":"6233–6243"},"PeriodicalIF":5.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Dual Surface Modification of Cellulose Nanocrystals with Hydrophobic Moieties and Functional Polymers via a Grafting-to Approach\",\"authors\":\"Richard Fuku,&nbsp;Yang Liu,&nbsp;Paolo Giuliana,&nbsp;Tianjia Yang,&nbsp;Devika Gopakumar,&nbsp;Edmond C. N. Wong,&nbsp;Paul A. E. Piunno,&nbsp;Ulrich J. Krull,&nbsp;Landon J. Edgar and Mitchell A. Winnik*,&nbsp;\",\"doi\":\"10.1021/acs.biomac.5c01194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cellulose nanocrystals (CNCs) are promising nanomaterials for biomedical applications owing to their biocompatibility, low toxicity, and versatile surface chemistry. However, efficient surface modification of CNCs with hydrophobic moieties and functional polymers remains challenging under mild aqueous conditions. Herein, we present an aqueous-phase “grafting-to” strategy that enables orthogonal conjugation of meso-tetra(4-carboxyphenyl)porphine (TCPP) and polyethylene glycol (PEG)-based polymers using a heterobifunctional linker. Aldehyde-functionalized CNCs were modified with dibenzocyclooctyne (DBCO)-amine via reductive amination to introduce two key functionalities: a secondary amine for amide coupling and a strained alkyne for copper-free click chemistry. We hypothesize that the hydrophobic environment surrounding the DBCO-modified CNC surface facilitates the noncovalent association of hydrophobic TCPP molecules, thereby significantly enhancing the conjugation reaction in water via the hydrophobic effect. The resulting dual-functionalized CNCs exhibited &gt;1 month colloidal stability in water, reduced nonspecific protein adsorption by over 86% after PEGylation, and presented a versatile platform for biological applications.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"26 9\",\"pages\":\"6233–6243\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biomac.5c01194\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.5c01194","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纤维素纳米晶体(CNCs)由于其生物相容性、低毒性和多用途的表面化学特性,在生物医学领域具有广阔的应用前景。然而,在温和的水条件下,用疏水基团和功能聚合物对cnc进行有效的表面改性仍然具有挑战性。在此,我们提出了一种水相“接枝”策略,该策略使中四(4-羧基苯基)卟啉(TCPP)和聚乙二醇(PEG)基聚合物使用异双功能连接剂进行正交共轭。二苯并环辛(DBCO)胺通过还原胺化修饰醛功能化cnc,引入两个关键官能团:用于酰胺偶联的仲胺和用于无铜点击化学的应变炔。我们假设dbco修饰CNC表面周围的疏水环境促进了疏水TCPP分子的非共价结合,从而通过疏水效应显著增强了在水中的共轭反应。所得到的双功能化CNCs在水中表现出100个月的胶体稳定性,PEGylation后非特异性蛋白质的吸附减少了86%以上,并为生物应用提供了一个多功能平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient Dual Surface Modification of Cellulose Nanocrystals with Hydrophobic Moieties and Functional Polymers via a Grafting-to Approach

Efficient Dual Surface Modification of Cellulose Nanocrystals with Hydrophobic Moieties and Functional Polymers via a Grafting-to Approach

Cellulose nanocrystals (CNCs) are promising nanomaterials for biomedical applications owing to their biocompatibility, low toxicity, and versatile surface chemistry. However, efficient surface modification of CNCs with hydrophobic moieties and functional polymers remains challenging under mild aqueous conditions. Herein, we present an aqueous-phase “grafting-to” strategy that enables orthogonal conjugation of meso-tetra(4-carboxyphenyl)porphine (TCPP) and polyethylene glycol (PEG)-based polymers using a heterobifunctional linker. Aldehyde-functionalized CNCs were modified with dibenzocyclooctyne (DBCO)-amine via reductive amination to introduce two key functionalities: a secondary amine for amide coupling and a strained alkyne for copper-free click chemistry. We hypothesize that the hydrophobic environment surrounding the DBCO-modified CNC surface facilitates the noncovalent association of hydrophobic TCPP molecules, thereby significantly enhancing the conjugation reaction in water via the hydrophobic effect. The resulting dual-functionalized CNCs exhibited >1 month colloidal stability in water, reduced nonspecific protein adsorption by over 86% after PEGylation, and presented a versatile platform for biological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信