{"title":"用于无人机冲击缓冲和自供电实时传感的生物启发扭曲双曲超材料","authors":"Xujiang Chao, Haoteng Hu, Jianjie Lin, Xueyang Ge, Yajun Wang, Linjie Xie, Bofan Hu, Liang Meng, Shudong Yu, Fei Liang, Lehua Qi, Zhong Lin Wang","doi":"10.1126/sciadv.adw6179","DOIUrl":null,"url":null,"abstract":"<div >Turbulence-induced vibrations pose substantial risks to aircraft structural integrity and flight stability, particularly in unmanned aerial vehicles (UAVs), where real-time impact monitoring and lightweight protection are critical. Here, we present a bioinspired twist-hyperbolic metamaterial (THM) integrated with a triboelectric nanogenerator (TENG) for simultaneously impact buffering and self-powered sensing. The THM-TENG protector exhibits tunable stiffness (40 to 4300 newtons per millimeter), ~70% impact energy absorption, and achieves a specific energy absorption of ~0.25 joules per gram at a weight of only 10 grams. Through triboelectrification, the protector converts mechanical energy into electrical signals, enabling real-time monitoring of impact loads up to 1000 newtons (≤5 hertz). Integrated with a microcontroller unit, wireless transmission, and alarm systems, THM-TENG demonstrates dual functionality in UAVs: mitigating vibration while providing real-time force monitoring, positioning, and early warning, all without external power sources. This work establishes a transformative framework for lightweight, multifunctional protective systems with applications in aerospace, robotics, and autonomous vehicles.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 36","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw6179","citationCount":"0","resultStr":"{\"title\":\"Bioinspired twist-hyperbolic metamaterial for impact buffering and self-powered real-time sensing in UAVs\",\"authors\":\"Xujiang Chao, Haoteng Hu, Jianjie Lin, Xueyang Ge, Yajun Wang, Linjie Xie, Bofan Hu, Liang Meng, Shudong Yu, Fei Liang, Lehua Qi, Zhong Lin Wang\",\"doi\":\"10.1126/sciadv.adw6179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Turbulence-induced vibrations pose substantial risks to aircraft structural integrity and flight stability, particularly in unmanned aerial vehicles (UAVs), where real-time impact monitoring and lightweight protection are critical. Here, we present a bioinspired twist-hyperbolic metamaterial (THM) integrated with a triboelectric nanogenerator (TENG) for simultaneously impact buffering and self-powered sensing. The THM-TENG protector exhibits tunable stiffness (40 to 4300 newtons per millimeter), ~70% impact energy absorption, and achieves a specific energy absorption of ~0.25 joules per gram at a weight of only 10 grams. Through triboelectrification, the protector converts mechanical energy into electrical signals, enabling real-time monitoring of impact loads up to 1000 newtons (≤5 hertz). Integrated with a microcontroller unit, wireless transmission, and alarm systems, THM-TENG demonstrates dual functionality in UAVs: mitigating vibration while providing real-time force monitoring, positioning, and early warning, all without external power sources. This work establishes a transformative framework for lightweight, multifunctional protective systems with applications in aerospace, robotics, and autonomous vehicles.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 36\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adw6179\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adw6179\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw6179","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Bioinspired twist-hyperbolic metamaterial for impact buffering and self-powered real-time sensing in UAVs
Turbulence-induced vibrations pose substantial risks to aircraft structural integrity and flight stability, particularly in unmanned aerial vehicles (UAVs), where real-time impact monitoring and lightweight protection are critical. Here, we present a bioinspired twist-hyperbolic metamaterial (THM) integrated with a triboelectric nanogenerator (TENG) for simultaneously impact buffering and self-powered sensing. The THM-TENG protector exhibits tunable stiffness (40 to 4300 newtons per millimeter), ~70% impact energy absorption, and achieves a specific energy absorption of ~0.25 joules per gram at a weight of only 10 grams. Through triboelectrification, the protector converts mechanical energy into electrical signals, enabling real-time monitoring of impact loads up to 1000 newtons (≤5 hertz). Integrated with a microcontroller unit, wireless transmission, and alarm systems, THM-TENG demonstrates dual functionality in UAVs: mitigating vibration while providing real-time force monitoring, positioning, and early warning, all without external power sources. This work establishes a transformative framework for lightweight, multifunctional protective systems with applications in aerospace, robotics, and autonomous vehicles.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.