Matthew Lai, Keegan Go, Zhibin Li, Torsten Kröger, Stefan Schaal, Kelsey Allen, Jonathan Scholz
{"title":"RoboBallet:基于图神经网络和强化学习的多机器人到达规划","authors":"Matthew Lai, Keegan Go, Zhibin Li, Torsten Kröger, Stefan Schaal, Kelsey Allen, Jonathan Scholz","doi":"10.1126/scirobotics.ads1204","DOIUrl":null,"url":null,"abstract":"<div >Modern robotic manufacturing requires collision-free coordination of multiple robots to complete numerous tasks in shared, obstacle-rich workspaces. Although individual tasks may be simple in isolation, automated joint task allocation, scheduling, and motion planning under spatiotemporal constraints remain computationally intractable for classical methods at real-world scales. Existing multiarm systems deployed in industry rely on human intuition and experience to design feasible trajectories manually in a labor-intensive process. To address this challenge, we propose a reinforcement learning (RL) framework to achieve automated task and motion planning, tested in an obstacle-rich environment with eight robots performing 40 reaching tasks in a shared workspace, where any robot can perform any task in any order. Our approach builds on a graph neural network (GNN) policy trained via RL on procedurally generated environments with diverse obstacle layouts, robot configurations, and task distributions. It uses a graph representation of scenes and a graph policy neural network trained through RL to generate trajectories of multiple robots, jointly solving the subproblems of task allocation, scheduling, and motion planning. Trained on large randomly generated task sets in simulation, our policy generalizes zero-shot to unseen settings with varying robot placements, obstacle geometries, and task poses. We further demonstrate that the high-speed capability of our solution enables its use in workcell layout optimization, improving solution times. The speed and scalability of our planner also open the door to capabilities such as fault-tolerant planning and online perception-based replanning, where rapid adaptation to dynamic task sets is required.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"10 106","pages":""},"PeriodicalIF":27.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RoboBallet: Planning for multirobot reaching with graph neural networks and reinforcement learning\",\"authors\":\"Matthew Lai, Keegan Go, Zhibin Li, Torsten Kröger, Stefan Schaal, Kelsey Allen, Jonathan Scholz\",\"doi\":\"10.1126/scirobotics.ads1204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Modern robotic manufacturing requires collision-free coordination of multiple robots to complete numerous tasks in shared, obstacle-rich workspaces. Although individual tasks may be simple in isolation, automated joint task allocation, scheduling, and motion planning under spatiotemporal constraints remain computationally intractable for classical methods at real-world scales. Existing multiarm systems deployed in industry rely on human intuition and experience to design feasible trajectories manually in a labor-intensive process. To address this challenge, we propose a reinforcement learning (RL) framework to achieve automated task and motion planning, tested in an obstacle-rich environment with eight robots performing 40 reaching tasks in a shared workspace, where any robot can perform any task in any order. Our approach builds on a graph neural network (GNN) policy trained via RL on procedurally generated environments with diverse obstacle layouts, robot configurations, and task distributions. It uses a graph representation of scenes and a graph policy neural network trained through RL to generate trajectories of multiple robots, jointly solving the subproblems of task allocation, scheduling, and motion planning. Trained on large randomly generated task sets in simulation, our policy generalizes zero-shot to unseen settings with varying robot placements, obstacle geometries, and task poses. We further demonstrate that the high-speed capability of our solution enables its use in workcell layout optimization, improving solution times. The speed and scalability of our planner also open the door to capabilities such as fault-tolerant planning and online perception-based replanning, where rapid adaptation to dynamic task sets is required.</div>\",\"PeriodicalId\":56029,\"journal\":{\"name\":\"Science Robotics\",\"volume\":\"10 106\",\"pages\":\"\"},\"PeriodicalIF\":27.5000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scirobotics.ads1204\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.ads1204","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
RoboBallet: Planning for multirobot reaching with graph neural networks and reinforcement learning
Modern robotic manufacturing requires collision-free coordination of multiple robots to complete numerous tasks in shared, obstacle-rich workspaces. Although individual tasks may be simple in isolation, automated joint task allocation, scheduling, and motion planning under spatiotemporal constraints remain computationally intractable for classical methods at real-world scales. Existing multiarm systems deployed in industry rely on human intuition and experience to design feasible trajectories manually in a labor-intensive process. To address this challenge, we propose a reinforcement learning (RL) framework to achieve automated task and motion planning, tested in an obstacle-rich environment with eight robots performing 40 reaching tasks in a shared workspace, where any robot can perform any task in any order. Our approach builds on a graph neural network (GNN) policy trained via RL on procedurally generated environments with diverse obstacle layouts, robot configurations, and task distributions. It uses a graph representation of scenes and a graph policy neural network trained through RL to generate trajectories of multiple robots, jointly solving the subproblems of task allocation, scheduling, and motion planning. Trained on large randomly generated task sets in simulation, our policy generalizes zero-shot to unseen settings with varying robot placements, obstacle geometries, and task poses. We further demonstrate that the high-speed capability of our solution enables its use in workcell layout optimization, improving solution times. The speed and scalability of our planner also open the door to capabilities such as fault-tolerant planning and online perception-based replanning, where rapid adaptation to dynamic task sets is required.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.