Qi Lv, Yishu Zhang, Juan Wang, Weijiang Lin, Ying Xie, Hongqiong Yang, Xunkai Yin, Zhenzhen Zhu, Yifan Cui, Yang Hu, Li Zeng, Yinan Zhang, Xubing Chen, Jian Liu, Lihong Hu
{"title":"脱氢木香内酯共价不可逆靶向NLRP3有效缓解炎性疾病","authors":"Qi Lv, Yishu Zhang, Juan Wang, Weijiang Lin, Ying Xie, Hongqiong Yang, Xunkai Yin, Zhenzhen Zhu, Yifan Cui, Yang Hu, Li Zeng, Yinan Zhang, Xubing Chen, Jian Liu, Lihong Hu","doi":"10.1002/mco2.70367","DOIUrl":null,"url":null,"abstract":"<p>The activation of nucleotide oligomerization domain-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is implicated in the pathogenesis of various inflammatory diseases. The natural product oridonin possesses a novel mechanism for NLRP3 inhibition and a unique binding mode with NLRP3, but its poor anti-inflammatory activity limits further application. After virtual screening of diverse natural product libraries, dehydrocostus lactone (DCL) was considered as a potential NLRP3 inhibitor. DCL effectively inhibited caspase-1 cleavage and release of IL-1β in mouse and human macrophages at an extremely low concentration of 10 nM, comparable to MCC950. Mechanistically, our study assigned DCL a novel role in disrupting NLRP3 inflammasome assembly and ASC oligomerization. Excluding the influence on potassium/chloride ion efflux, calcium ion influx, and production of mitochondrial ROS, DCL formed a covalent bond with cysteine 280 in NACHT domain of NLRP3, thereby inhibiting the interaction between NLRP3 and NEK7. Furthermore, DCL exhibited protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including dextran sulfate sodium-induced colitis, 2,4,6-trinitrobenzenesulfonic acid-induced Crohn's disease, LPS-induced septic shock, and monosodium urate-induced peritonitis. Our findings identify NLRP3 as the direct target of DCL, positioning DCL as a promising lead compound for treatment of NLRP3 inflammasome-related diseases.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 9","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70367","citationCount":"0","resultStr":"{\"title\":\"Dehydrocostus Lactone Effectively Alleviates Inflammatory Diseases by Covalently and Irreversibly Targeting NLRP3\",\"authors\":\"Qi Lv, Yishu Zhang, Juan Wang, Weijiang Lin, Ying Xie, Hongqiong Yang, Xunkai Yin, Zhenzhen Zhu, Yifan Cui, Yang Hu, Li Zeng, Yinan Zhang, Xubing Chen, Jian Liu, Lihong Hu\",\"doi\":\"10.1002/mco2.70367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The activation of nucleotide oligomerization domain-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is implicated in the pathogenesis of various inflammatory diseases. The natural product oridonin possesses a novel mechanism for NLRP3 inhibition and a unique binding mode with NLRP3, but its poor anti-inflammatory activity limits further application. After virtual screening of diverse natural product libraries, dehydrocostus lactone (DCL) was considered as a potential NLRP3 inhibitor. DCL effectively inhibited caspase-1 cleavage and release of IL-1β in mouse and human macrophages at an extremely low concentration of 10 nM, comparable to MCC950. Mechanistically, our study assigned DCL a novel role in disrupting NLRP3 inflammasome assembly and ASC oligomerization. Excluding the influence on potassium/chloride ion efflux, calcium ion influx, and production of mitochondrial ROS, DCL formed a covalent bond with cysteine 280 in NACHT domain of NLRP3, thereby inhibiting the interaction between NLRP3 and NEK7. Furthermore, DCL exhibited protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including dextran sulfate sodium-induced colitis, 2,4,6-trinitrobenzenesulfonic acid-induced Crohn's disease, LPS-induced septic shock, and monosodium urate-induced peritonitis. Our findings identify NLRP3 as the direct target of DCL, positioning DCL as a promising lead compound for treatment of NLRP3 inflammasome-related diseases.</p>\",\"PeriodicalId\":94133,\"journal\":{\"name\":\"MedComm\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70367\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Dehydrocostus Lactone Effectively Alleviates Inflammatory Diseases by Covalently and Irreversibly Targeting NLRP3
The activation of nucleotide oligomerization domain-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is implicated in the pathogenesis of various inflammatory diseases. The natural product oridonin possesses a novel mechanism for NLRP3 inhibition and a unique binding mode with NLRP3, but its poor anti-inflammatory activity limits further application. After virtual screening of diverse natural product libraries, dehydrocostus lactone (DCL) was considered as a potential NLRP3 inhibitor. DCL effectively inhibited caspase-1 cleavage and release of IL-1β in mouse and human macrophages at an extremely low concentration of 10 nM, comparable to MCC950. Mechanistically, our study assigned DCL a novel role in disrupting NLRP3 inflammasome assembly and ASC oligomerization. Excluding the influence on potassium/chloride ion efflux, calcium ion influx, and production of mitochondrial ROS, DCL formed a covalent bond with cysteine 280 in NACHT domain of NLRP3, thereby inhibiting the interaction between NLRP3 and NEK7. Furthermore, DCL exhibited protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including dextran sulfate sodium-induced colitis, 2,4,6-trinitrobenzenesulfonic acid-induced Crohn's disease, LPS-induced septic shock, and monosodium urate-induced peritonitis. Our findings identify NLRP3 as the direct target of DCL, positioning DCL as a promising lead compound for treatment of NLRP3 inflammasome-related diseases.