当一些仪器无效和/或不相关时,用许多仪器增强GMM

IF 1.4 3区 经济学 Q2 ECONOMICS
Hao Hao, Tae-Hwy Lee
{"title":"当一些仪器无效和/或不相关时,用许多仪器增强GMM","authors":"Hao Hao,&nbsp;Tae-Hwy Lee","doi":"10.1111/obes.12671","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>When the endogenous variable is an unknown function of observable instruments, its conditional mean can be approximated using the sieve functions of observable instruments. We propose a novel instrument selection method, double-criteria boosting (DB), that consistently selects only valid and relevant instruments from a large set of candidate instruments. In the Monte Carlo simulation, we compare generalized method of moments (GMM) using DB (DB-GMM) with other estimation methods and demonstrate that DB-GMM gives lower bias and root mean squared error. In the empirical application to the automobile demand, the DB-GMM estimator is suggesting a more elastic estimate of the price elasticity of demand than the standard two-stage least square estimator.</p>\n </div>","PeriodicalId":54654,"journal":{"name":"Oxford Bulletin of Economics and Statistics","volume":"87 5","pages":"899-912"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosting GMM With Many Instruments When Some Are Invalid And/Or Irrelevant\",\"authors\":\"Hao Hao,&nbsp;Tae-Hwy Lee\",\"doi\":\"10.1111/obes.12671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>When the endogenous variable is an unknown function of observable instruments, its conditional mean can be approximated using the sieve functions of observable instruments. We propose a novel instrument selection method, double-criteria boosting (DB), that consistently selects only valid and relevant instruments from a large set of candidate instruments. In the Monte Carlo simulation, we compare generalized method of moments (GMM) using DB (DB-GMM) with other estimation methods and demonstrate that DB-GMM gives lower bias and root mean squared error. In the empirical application to the automobile demand, the DB-GMM estimator is suggesting a more elastic estimate of the price elasticity of demand than the standard two-stage least square estimator.</p>\\n </div>\",\"PeriodicalId\":54654,\"journal\":{\"name\":\"Oxford Bulletin of Economics and Statistics\",\"volume\":\"87 5\",\"pages\":\"899-912\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford Bulletin of Economics and Statistics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/obes.12671\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford Bulletin of Economics and Statistics","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/obes.12671","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

当内生变量为可观测仪器的未知函数时,可以使用可观测仪器的筛选函数来近似其条件均值。我们提出了一种新的仪器选择方法,双标准提升(DB),它始终如一地从大量候选仪器中选择有效和相关的仪器。在蒙特卡罗模拟中,我们比较了使用DB (DB-GMM)的广义矩量法(GMM)与其他估计方法,并证明DB-GMM具有更低的偏差和均方根误差。在对汽车需求的实证应用中,DB-GMM估计器比标准的两阶段最小二乘估计器对需求的价格弹性提出了更有弹性的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boosting GMM With Many Instruments When Some Are Invalid And/Or Irrelevant

When the endogenous variable is an unknown function of observable instruments, its conditional mean can be approximated using the sieve functions of observable instruments. We propose a novel instrument selection method, double-criteria boosting (DB), that consistently selects only valid and relevant instruments from a large set of candidate instruments. In the Monte Carlo simulation, we compare generalized method of moments (GMM) using DB (DB-GMM) with other estimation methods and demonstrate that DB-GMM gives lower bias and root mean squared error. In the empirical application to the automobile demand, the DB-GMM estimator is suggesting a more elastic estimate of the price elasticity of demand than the standard two-stage least square estimator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oxford Bulletin of Economics and Statistics
Oxford Bulletin of Economics and Statistics 管理科学-统计学与概率论
CiteScore
5.10
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: Whilst the Oxford Bulletin of Economics and Statistics publishes papers in all areas of applied economics, emphasis is placed on the practical importance, theoretical interest and policy-relevance of their substantive results, as well as on the methodology and technical competence of the research. Contributions on the topical issues of economic policy and the testing of currently controversial economic theories are encouraged, as well as more empirical research on both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信