Bidyut Bikash Goswami, Andrea Polesello, Caroline Muller
{"title":"群落大气模式6 (CAM6) CAPE弛豫时间尺度表征陆海异质性的评估","authors":"Bidyut Bikash Goswami, Andrea Polesello, Caroline Muller","doi":"10.1029/2025MS005035","DOIUrl":null,"url":null,"abstract":"<p>The time needed by deep convection to bring the atmosphere back to equilibrium is called convective adjustment timescale or simply adjustment timescale, typically denoted by <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation> $\\tau $</annotation>\n </semantics></math>. In the Community Atmospheric Model|Community Atmosphere Model (CAM), <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation> $\\tau $</annotation>\n </semantics></math> is the convective available potential energy (CAPE) relaxation timescale and is 1 hr, worldwide. Observational evidence suggests that <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation> $\\tau $</annotation>\n </semantics></math> is generally longer than 1 hr. Further, continental and oceanic convection are different in terms of the vigor of updrafts and can have different longevities. So using <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $\\tau =1$</annotation>\n </semantics></math> hour worldwide in CAM has two potential caveats. A longer <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation> $\\tau $</annotation>\n </semantics></math> improves the simulation of the mean climate. However, it does not address the land-ocean heterogeneity of atmospheric deep convection. We investigate the prescription of two different CAPE relaxation timescales for land (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>τ</mi>\n <mi>L</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${\\tau }_{L}=1$</annotation>\n </semantics></math> hr) and ocean (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>τ</mi>\n <mi>O</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${\\tau }_{O}=1$</annotation>\n </semantics></math> to 4 hr). It is arguably an extremely crude parameterization of boundary layer control on atmospheric convection. We contrast a suite of 5-year-long simulations with two different <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation> $\\tau $</annotation>\n </semantics></math> for land and ocean to having one <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation> $\\tau $</annotation>\n </semantics></math> globally. The choice of longer <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation> $\\tau $</annotation>\n </semantics></math> over ocean is guided by previous studies and inspired by observational pieces of evidence. Nonetheless, to complement our variable <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>τ</mi>\n <mi>O</mi>\n </msub>\n </mrow>\n <annotation> ${\\tau }_{O}$</annotation>\n </semantics></math> experiments, we perform a simulation with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>τ</mi>\n <mi>O</mi>\n </msub>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation> ${\\tau }_{O}=1$</annotation>\n </semantics></math> hr and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>τ</mi>\n <mi>L</mi>\n </msub>\n <mo>=</mo>\n <mn>4</mn>\n </mrow>\n <annotation> ${\\tau }_{L}=4$</annotation>\n </semantics></math> hrs. Most importantly, our key findings are immune to the exact values of prescribed <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>τ</mi>\n <mi>L</mi>\n </msub>\n </mrow>\n <annotation> ${\\tau }_{L}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>τ</mi>\n <mi>O</mi>\n </msub>\n </mrow>\n <annotation> ${\\tau }_{O}$</annotation>\n </semantics></math>. The CAM model, with two <span></span><math>\n <semantics>\n <mrow>\n <mi>τ</mi>\n </mrow>\n <annotation> $\\tau $</annotation>\n </semantics></math> values <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <msub>\n <mi>τ</mi>\n <mi>O</mi>\n </msub>\n <mo>></mo>\n <msub>\n <mi>τ</mi>\n <mi>L</mi>\n </msub>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left({\\tau }_{O} > {\\tau }_{L}\\right)$</annotation>\n </semantics></math>, improves convective-stratiform rainfall partitioning and the Madden–Julian oscillation propagation characteristics.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 9","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025MS005035","citationCount":"0","resultStr":"{\"title\":\"An Assessment of Representing Land-Ocean Heterogeneity via CAPE Relaxation Timescale in the Community Atmospheric Model 6 (CAM6)\",\"authors\":\"Bidyut Bikash Goswami, Andrea Polesello, Caroline Muller\",\"doi\":\"10.1029/2025MS005035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The time needed by deep convection to bring the atmosphere back to equilibrium is called convective adjustment timescale or simply adjustment timescale, typically denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n </mrow>\\n <annotation> $\\\\tau $</annotation>\\n </semantics></math>. In the Community Atmospheric Model|Community Atmosphere Model (CAM), <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n </mrow>\\n <annotation> $\\\\tau $</annotation>\\n </semantics></math> is the convective available potential energy (CAPE) relaxation timescale and is 1 hr, worldwide. Observational evidence suggests that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n </mrow>\\n <annotation> $\\\\tau $</annotation>\\n </semantics></math> is generally longer than 1 hr. Further, continental and oceanic convection are different in terms of the vigor of updrafts and can have different longevities. So using <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> $\\\\tau =1$</annotation>\\n </semantics></math> hour worldwide in CAM has two potential caveats. A longer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n </mrow>\\n <annotation> $\\\\tau $</annotation>\\n </semantics></math> improves the simulation of the mean climate. However, it does not address the land-ocean heterogeneity of atmospheric deep convection. We investigate the prescription of two different CAPE relaxation timescales for land (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>τ</mi>\\n <mi>L</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${\\\\tau }_{L}=1$</annotation>\\n </semantics></math> hr) and ocean (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>τ</mi>\\n <mi>O</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${\\\\tau }_{O}=1$</annotation>\\n </semantics></math> to 4 hr). It is arguably an extremely crude parameterization of boundary layer control on atmospheric convection. We contrast a suite of 5-year-long simulations with two different <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n </mrow>\\n <annotation> $\\\\tau $</annotation>\\n </semantics></math> for land and ocean to having one <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n </mrow>\\n <annotation> $\\\\tau $</annotation>\\n </semantics></math> globally. The choice of longer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n </mrow>\\n <annotation> $\\\\tau $</annotation>\\n </semantics></math> over ocean is guided by previous studies and inspired by observational pieces of evidence. Nonetheless, to complement our variable <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>τ</mi>\\n <mi>O</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\tau }_{O}$</annotation>\\n </semantics></math> experiments, we perform a simulation with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>τ</mi>\\n <mi>O</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> ${\\\\tau }_{O}=1$</annotation>\\n </semantics></math> hr and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>τ</mi>\\n <mi>L</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation> ${\\\\tau }_{L}=4$</annotation>\\n </semantics></math> hrs. Most importantly, our key findings are immune to the exact values of prescribed <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>τ</mi>\\n <mi>L</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\tau }_{L}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>τ</mi>\\n <mi>O</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\tau }_{O}$</annotation>\\n </semantics></math>. The CAM model, with two <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>τ</mi>\\n </mrow>\\n <annotation> $\\\\tau $</annotation>\\n </semantics></math> values <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <msub>\\n <mi>τ</mi>\\n <mi>O</mi>\\n </msub>\\n <mo>></mo>\\n <msub>\\n <mi>τ</mi>\\n <mi>L</mi>\\n </msub>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({\\\\tau }_{O} > {\\\\tau }_{L}\\\\right)$</annotation>\\n </semantics></math>, improves convective-stratiform rainfall partitioning and the Madden–Julian oscillation propagation characteristics.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025MS005035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025MS005035\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025MS005035","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
深层对流使大气恢复平衡所需的时间称为对流调整时间标,或简称为调整时间标,通常用τ $\tau $表示。在社区大气模式|社区大气模式(CAM)中,τ $\tau $为对流有效势能(CAPE)松弛时间标度,在全球范围内为1小时。观测证据表明,τ $\tau $通常长于1小时。此外,大陆和海洋对流在上升气流的活力方面是不同的,并且可以有不同的寿命。因此,在CAM中使用τ = 1 $\tau =1$小时有两个潜在的警告。较长的τ $\tau $改进了对平均气候的模拟。然而,它没有解决大气深层对流的陆海非均质性问题。我们研究了陆地(τ L = 1 ${\tau }_{L}=1$ hr)和海洋(τ O = 1 hr)两种不同CAPE松弛时间尺度的处方1 ${\tau }_{O}=1$至4小时)。这可以说是边界层对大气对流控制的一种极其粗糙的参数化。我们对比了一套为期5年的模拟,在陆地和海洋中使用两个不同的τ $\tau $,在全球范围内使用一个τ $\tau $。选择较长的τ $\tau $在海洋上是由以前的研究指导和观测证据的启发。尽管如此,为了补充我们的变量τ O ${\tau }_{O}$实验,我们用τ O = 1 ${\tau }_{O}=1$ hr和τ L = 4 ${\tau }_{L}=4$进行模拟几个小时。最重要的是,我们的关键发现不受规定τ L ${\tau }_{L}$和τ O ${\tau }_{O}$的精确值的影响。CAM模型,两个τ $\tau $值τ O &gt; τ L$\left({\tau }_{O} > {\tau }_{L}\right)$,改善了对流层降水分配和Madden-Julian振荡传播特性。
An Assessment of Representing Land-Ocean Heterogeneity via CAPE Relaxation Timescale in the Community Atmospheric Model 6 (CAM6)
The time needed by deep convection to bring the atmosphere back to equilibrium is called convective adjustment timescale or simply adjustment timescale, typically denoted by . In the Community Atmospheric Model|Community Atmosphere Model (CAM), is the convective available potential energy (CAPE) relaxation timescale and is 1 hr, worldwide. Observational evidence suggests that is generally longer than 1 hr. Further, continental and oceanic convection are different in terms of the vigor of updrafts and can have different longevities. So using hour worldwide in CAM has two potential caveats. A longer improves the simulation of the mean climate. However, it does not address the land-ocean heterogeneity of atmospheric deep convection. We investigate the prescription of two different CAPE relaxation timescales for land ( hr) and ocean ( to 4 hr). It is arguably an extremely crude parameterization of boundary layer control on atmospheric convection. We contrast a suite of 5-year-long simulations with two different for land and ocean to having one globally. The choice of longer over ocean is guided by previous studies and inspired by observational pieces of evidence. Nonetheless, to complement our variable experiments, we perform a simulation with hr and hrs. Most importantly, our key findings are immune to the exact values of prescribed and . The CAM model, with two values , improves convective-stratiform rainfall partitioning and the Madden–Julian oscillation propagation characteristics.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.