石蜡作为中子辐射屏蔽材料的火灾危险性

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dan Madsen, Fredrik Jörud, Patrick van Hees, Bjarne Paulsen Husted
{"title":"石蜡作为中子辐射屏蔽材料的火灾危险性","authors":"Dan Madsen,&nbsp;Fredrik Jörud,&nbsp;Patrick van Hees,&nbsp;Bjarne Paulsen Husted","doi":"10.1002/fam.3305","DOIUrl":null,"url":null,"abstract":"<p>Safety in general and fire safety in particular are key concerns in neutron-based research facilities, and the choice of the material that is used to stop neutron radiation is critical in this respect. Borated paraffin has been used at existing research facilities and could potentially be used at new facilities. However, a literature search resulted in very little information about the fire properties of borated paraffin. This was the motivation for the study discussed in this article. Two types of fire tests were performed. The Cone Calorimeter was used to obtain heat release rate characteristics of regular paraffin and borated paraffin. The results from standard Cone Calorimeter tests on specimens in the horizontal orientation show that borated paraffin with 4.5% boron has a heat release rate per unit area that is a factor of 3–5 lower than regular paraffin. The second type of test involved exposure of a small mock-up of a section of a hollow steel wall filled with borated paraffin exposed on one side to the standard ISO 834 temperature–time curve. During the first 20 min of the test, the borated paraffin in contact with the steel plate on the exposed side melted. Pressure from boiling water in the resulting cavity was relieved by pushing the molten paraffin to the unexposed side, where it exited through cracks in the unexposed surface of the wall section. The test confirmed the hypothesis of pressure release by molten paraffin.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"49 6","pages":"951-959"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3305","citationCount":"0","resultStr":"{\"title\":\"Fire Risks in Using Paraffin as Neutron Radiation Shielding Material\",\"authors\":\"Dan Madsen,&nbsp;Fredrik Jörud,&nbsp;Patrick van Hees,&nbsp;Bjarne Paulsen Husted\",\"doi\":\"10.1002/fam.3305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Safety in general and fire safety in particular are key concerns in neutron-based research facilities, and the choice of the material that is used to stop neutron radiation is critical in this respect. Borated paraffin has been used at existing research facilities and could potentially be used at new facilities. However, a literature search resulted in very little information about the fire properties of borated paraffin. This was the motivation for the study discussed in this article. Two types of fire tests were performed. The Cone Calorimeter was used to obtain heat release rate characteristics of regular paraffin and borated paraffin. The results from standard Cone Calorimeter tests on specimens in the horizontal orientation show that borated paraffin with 4.5% boron has a heat release rate per unit area that is a factor of 3–5 lower than regular paraffin. The second type of test involved exposure of a small mock-up of a section of a hollow steel wall filled with borated paraffin exposed on one side to the standard ISO 834 temperature–time curve. During the first 20 min of the test, the borated paraffin in contact with the steel plate on the exposed side melted. Pressure from boiling water in the resulting cavity was relieved by pushing the molten paraffin to the unexposed side, where it exited through cracks in the unexposed surface of the wall section. The test confirmed the hypothesis of pressure release by molten paraffin.</p>\",\"PeriodicalId\":12186,\"journal\":{\"name\":\"Fire and Materials\",\"volume\":\"49 6\",\"pages\":\"951-959\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3305\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fam.3305\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3305","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一般安全,特别是消防安全是中子研究设施的关键问题,在这方面,用于阻止中子辐射的材料的选择至关重要。硼化石蜡已在现有的研究设施中使用,并有可能在新设施中使用。然而,文献检索导致很少的信息,火性质的硼酸石蜡。这就是本文所讨论的研究的动机。进行了两种类型的火灾试验。用锥形量热仪测定了正石蜡和硼酸石蜡的放热速率特性。用标准锥量热计对水平方向的石蜡试样进行了测试,结果表明,含4.5%硼的硼化石蜡单位面积放热率比普通石蜡低3-5倍。第二种类型的测试是将一段填充硼酸石蜡的空心钢墙的小模型暴露在标准ISO 834温度-时间曲线上。在试验的前20分钟内,与暴露侧钢板接触的含硼石蜡熔化。由此产生的空腔中沸水的压力通过将熔融石蜡推到未暴露的一侧来缓解,在那里它通过壁段未暴露表面的裂缝排出。试验证实了熔融石蜡释放压力的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fire Risks in Using Paraffin as Neutron Radiation Shielding Material

Fire Risks in Using Paraffin as Neutron Radiation Shielding Material

Safety in general and fire safety in particular are key concerns in neutron-based research facilities, and the choice of the material that is used to stop neutron radiation is critical in this respect. Borated paraffin has been used at existing research facilities and could potentially be used at new facilities. However, a literature search resulted in very little information about the fire properties of borated paraffin. This was the motivation for the study discussed in this article. Two types of fire tests were performed. The Cone Calorimeter was used to obtain heat release rate characteristics of regular paraffin and borated paraffin. The results from standard Cone Calorimeter tests on specimens in the horizontal orientation show that borated paraffin with 4.5% boron has a heat release rate per unit area that is a factor of 3–5 lower than regular paraffin. The second type of test involved exposure of a small mock-up of a section of a hollow steel wall filled with borated paraffin exposed on one side to the standard ISO 834 temperature–time curve. During the first 20 min of the test, the borated paraffin in contact with the steel plate on the exposed side melted. Pressure from boiling water in the resulting cavity was relieved by pushing the molten paraffin to the unexposed side, where it exited through cracks in the unexposed surface of the wall section. The test confirmed the hypothesis of pressure release by molten paraffin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fire and Materials
Fire and Materials 工程技术-材料科学:综合
CiteScore
4.60
自引率
5.30%
发文量
72
审稿时长
3 months
期刊介绍: Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals. Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信