3D打印加载加巴喷丁的植入物用于持续释放:利用3D打印和热熔挤出(HME)进行可定制的药物输送

IF 4 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Baher A. Daihom, Hala M. Abdelhakk, Mohammed Maniruzzaman
{"title":"3D打印加载加巴喷丁的植入物用于持续释放:利用3D打印和热熔挤出(HME)进行可定制的药物输送","authors":"Baher A. Daihom,&nbsp;Hala M. Abdelhakk,&nbsp;Mohammed Maniruzzaman","doi":"10.1208/s12249-025-03215-3","DOIUrl":null,"url":null,"abstract":"<div><p>Pediatric neuropathy poses significant challenges in pain management due to the limited availability of approved pharmacological options. Gabapentin, commonly used for neuropathic pain, offers therapeutic potential but necessitates careful dosing due to its variable bioavailability. This study investigates the integration of Hot Melt Extrusion and Fused Deposition Modeling in the development of polycaprolactone-based implants for sustained release of Gabapentin. A preliminary screening using Vacuum Compression Molding optimized formulations for Hot Melt Extrusion, enhancing material efficiency and process streamlining. Filaments with a diameter of 1.75 mm were successfully extruded and used for 3D printing of Gabapentin implants. Several tests were undertaken to characterize the prepared filaments and implants. Energy-Dispersive X-ray spectroscopy confirmed the uniform distribution of Gabapentin within the implant matrix. Solid-state characterization techniques were employed to assess the compatibility of implant components and to verify the solid-state of Gabapentin within the implant structure. <i>In vitro</i> drug release studies were conducted. Filaments with varying drug loadings were examined, revealing that a 20% w/w drug loading achieved an optimal balance between rapid and sustained release. Additionally, implants with different infill densities were analyzed, demonstrating that varying infill densities allow control over the amount and percentage of drug released. The 100% infill density resulted in the most sustained release effect, achieving approximately 40% drug release by day 28. These findings underscore the feasibility of 3D printing for producing personalized implants, emphasizing the potential for tailored drug release profiles to meet specific needs of pediatric patients.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 7","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1208/s12249-025-03215-3.pdf","citationCount":"0","resultStr":"{\"title\":\"3D-printed Gabapentin-loaded Implants for Sustained Release: Leveraging 3D Printing and Hot Melt Extrusion (HME) for Customizable Drug Delivery\",\"authors\":\"Baher A. Daihom,&nbsp;Hala M. Abdelhakk,&nbsp;Mohammed Maniruzzaman\",\"doi\":\"10.1208/s12249-025-03215-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pediatric neuropathy poses significant challenges in pain management due to the limited availability of approved pharmacological options. Gabapentin, commonly used for neuropathic pain, offers therapeutic potential but necessitates careful dosing due to its variable bioavailability. This study investigates the integration of Hot Melt Extrusion and Fused Deposition Modeling in the development of polycaprolactone-based implants for sustained release of Gabapentin. A preliminary screening using Vacuum Compression Molding optimized formulations for Hot Melt Extrusion, enhancing material efficiency and process streamlining. Filaments with a diameter of 1.75 mm were successfully extruded and used for 3D printing of Gabapentin implants. Several tests were undertaken to characterize the prepared filaments and implants. Energy-Dispersive X-ray spectroscopy confirmed the uniform distribution of Gabapentin within the implant matrix. Solid-state characterization techniques were employed to assess the compatibility of implant components and to verify the solid-state of Gabapentin within the implant structure. <i>In vitro</i> drug release studies were conducted. Filaments with varying drug loadings were examined, revealing that a 20% w/w drug loading achieved an optimal balance between rapid and sustained release. Additionally, implants with different infill densities were analyzed, demonstrating that varying infill densities allow control over the amount and percentage of drug released. The 100% infill density resulted in the most sustained release effect, achieving approximately 40% drug release by day 28. These findings underscore the feasibility of 3D printing for producing personalized implants, emphasizing the potential for tailored drug release profiles to meet specific needs of pediatric patients.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":6925,\"journal\":{\"name\":\"AAPS PharmSciTech\",\"volume\":\"26 7\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1208/s12249-025-03215-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS PharmSciTech\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1208/s12249-025-03215-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-025-03215-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

由于获得批准的药物选择有限,儿科神经病变在疼痛管理方面提出了重大挑战。加巴喷丁,通常用于神经性疼痛,具有治疗潜力,但由于其可变的生物利用度,需要谨慎给药。本研究探讨了热熔挤压和熔融沉积建模在加巴喷丁缓释聚己内酯植入物开发中的集成。初步筛选使用真空压缩成型优化配方热熔挤压,提高材料效率和流程精简。成功挤出直径1.75 mm的细丝,用于3D打印加巴喷丁植入物。进行了几项试验来表征所制备的长丝和植入物。能量色散x射线光谱证实了加巴喷丁在种植体基质中的均匀分布。采用固态表征技术评估种植体组分的相容性,并验证加巴喷丁在种植体结构中的固态。进行体外药物释放研究。对不同载药量的细丝进行了检查,发现20% w/w的载药量在快速和持续释放之间达到了最佳平衡。此外,对不同填充密度的植入物进行了分析,表明不同的填充密度可以控制药物的释放量和百分比。100%的填充密度导致最持久的释放效果,在第28天达到约40%的药物释放。这些发现强调了3D打印生产个性化植入物的可行性,强调了定制药物释放曲线的潜力,以满足儿科患者的特定需求。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D-printed Gabapentin-loaded Implants for Sustained Release: Leveraging 3D Printing and Hot Melt Extrusion (HME) for Customizable Drug Delivery

Pediatric neuropathy poses significant challenges in pain management due to the limited availability of approved pharmacological options. Gabapentin, commonly used for neuropathic pain, offers therapeutic potential but necessitates careful dosing due to its variable bioavailability. This study investigates the integration of Hot Melt Extrusion and Fused Deposition Modeling in the development of polycaprolactone-based implants for sustained release of Gabapentin. A preliminary screening using Vacuum Compression Molding optimized formulations for Hot Melt Extrusion, enhancing material efficiency and process streamlining. Filaments with a diameter of 1.75 mm were successfully extruded and used for 3D printing of Gabapentin implants. Several tests were undertaken to characterize the prepared filaments and implants. Energy-Dispersive X-ray spectroscopy confirmed the uniform distribution of Gabapentin within the implant matrix. Solid-state characterization techniques were employed to assess the compatibility of implant components and to verify the solid-state of Gabapentin within the implant structure. In vitro drug release studies were conducted. Filaments with varying drug loadings were examined, revealing that a 20% w/w drug loading achieved an optimal balance between rapid and sustained release. Additionally, implants with different infill densities were analyzed, demonstrating that varying infill densities allow control over the amount and percentage of drug released. The 100% infill density resulted in the most sustained release effect, achieving approximately 40% drug release by day 28. These findings underscore the feasibility of 3D printing for producing personalized implants, emphasizing the potential for tailored drug release profiles to meet specific needs of pediatric patients.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS PharmSciTech
AAPS PharmSciTech 医学-药学
CiteScore
6.80
自引率
3.00%
发文量
264
审稿时长
2.4 months
期刊介绍: AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信