基于隐式图的心轴偏差降导心电图心血管疾病检测

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Akriti Jaiswal;Samarendra Dandapat;Prabin Kumar Bora
{"title":"基于隐式图的心轴偏差降导心电图心血管疾病检测","authors":"Akriti Jaiswal;Samarendra Dandapat;Prabin Kumar Bora","doi":"10.1109/LSENS.2025.3600990","DOIUrl":null,"url":null,"abstract":"Accurate and effective cardiovascular disease (CVD) diagnosis is particularly difficult in telemedicine and resource-constrained environments due to traditional multilead electrocardiogram (ECG) devices' high computational and operational expenses. We propose a computationally effective graph-based approach to the automated detection of CVD from reduced-lead {I, II} ECG. The approach formulates lead relationships as a dynamic graph <inline-formula><tex-math>$G=(V, E)$</tex-math></inline-formula> whose nodes <inline-formula><tex-math>$V=\\lbrace \\text{I}, \\text{II}\\rbrace$</tex-math></inline-formula> correspond to leads and whose edge weights <inline-formula><tex-math>$w_{ij}(t) \\in E$</tex-math></inline-formula> capture time-varying cardiac axis deviation angles <inline-formula><tex-math>$\\theta (t)$</tex-math></inline-formula> in the frontal plane. Three statistical features are obtained: mean angle <inline-formula><tex-math>$\\mu _\\theta$</tex-math></inline-formula>, angular variance <inline-formula><tex-math>$\\sigma _\\theta ^{2}$</tex-math></inline-formula>, and lead correlation coefficient <inline-formula><tex-math>$\\rho _{\\text{I, II}}$</tex-math></inline-formula>. Experimental testing on PTB-XL and PTB datasets establishes state-of-the-art performance at 89.2% and 84.1% accuracy, respectively, without redundant computations native to multilead ECG. The approach ensures clinical-grade accuracy with <inline-formula><tex-math>$O(1)$</tex-math></inline-formula> feature extraction complexity, providing an optimal tradeoff between accuracy and computational efficiency for resource-constrained wearable ECG sensors and tele-ECG applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 9","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implicit Graph-Based Cardiovascular Disease Detection Using Cardiac Axis Deviation in Reduced-Lead ECG\",\"authors\":\"Akriti Jaiswal;Samarendra Dandapat;Prabin Kumar Bora\",\"doi\":\"10.1109/LSENS.2025.3600990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and effective cardiovascular disease (CVD) diagnosis is particularly difficult in telemedicine and resource-constrained environments due to traditional multilead electrocardiogram (ECG) devices' high computational and operational expenses. We propose a computationally effective graph-based approach to the automated detection of CVD from reduced-lead {I, II} ECG. The approach formulates lead relationships as a dynamic graph <inline-formula><tex-math>$G=(V, E)$</tex-math></inline-formula> whose nodes <inline-formula><tex-math>$V=\\\\lbrace \\\\text{I}, \\\\text{II}\\\\rbrace$</tex-math></inline-formula> correspond to leads and whose edge weights <inline-formula><tex-math>$w_{ij}(t) \\\\in E$</tex-math></inline-formula> capture time-varying cardiac axis deviation angles <inline-formula><tex-math>$\\\\theta (t)$</tex-math></inline-formula> in the frontal plane. Three statistical features are obtained: mean angle <inline-formula><tex-math>$\\\\mu _\\\\theta$</tex-math></inline-formula>, angular variance <inline-formula><tex-math>$\\\\sigma _\\\\theta ^{2}$</tex-math></inline-formula>, and lead correlation coefficient <inline-formula><tex-math>$\\\\rho _{\\\\text{I, II}}$</tex-math></inline-formula>. Experimental testing on PTB-XL and PTB datasets establishes state-of-the-art performance at 89.2% and 84.1% accuracy, respectively, without redundant computations native to multilead ECG. The approach ensures clinical-grade accuracy with <inline-formula><tex-math>$O(1)$</tex-math></inline-formula> feature extraction complexity, providing an optimal tradeoff between accuracy and computational efficiency for resource-constrained wearable ECG sensors and tele-ECG applications.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 9\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11130923/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11130923/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于传统的多导联心电图(ECG)设备的高计算和操作费用,在远程医疗和资源受限的环境中,准确有效的心血管疾病(CVD)诊断尤其困难。我们提出了一种计算有效的基于图的方法来自动检测降导联{I, II} ECG的CVD。该方法将导联关系表述为动态图$G=(V, E)$,其节点$V=\lbrace \text{I}, \text{II}\rbrace$对应导联,其边权$w_{ij}(t) \in E$捕获正面平面上随时间变化的心轴偏差角$\theta (t)$。得到三个统计特征:平均角度$\mu _\theta$、角度方差$\sigma _\theta ^{2}$和领先相关系数$\rho _{\text{I, II}}$。在PTB- xl和PTB数据集上的实验测试建立了89.2的最先进性能% and 84.1% accuracy, respectively, without redundant computations native to multilead ECG. The approach ensures clinical-grade accuracy with $O(1)$ feature extraction complexity, providing an optimal tradeoff between accuracy and computational efficiency for resource-constrained wearable ECG sensors and tele-ECG applications.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implicit Graph-Based Cardiovascular Disease Detection Using Cardiac Axis Deviation in Reduced-Lead ECG
Accurate and effective cardiovascular disease (CVD) diagnosis is particularly difficult in telemedicine and resource-constrained environments due to traditional multilead electrocardiogram (ECG) devices' high computational and operational expenses. We propose a computationally effective graph-based approach to the automated detection of CVD from reduced-lead {I, II} ECG. The approach formulates lead relationships as a dynamic graph $G=(V, E)$ whose nodes $V=\lbrace \text{I}, \text{II}\rbrace$ correspond to leads and whose edge weights $w_{ij}(t) \in E$ capture time-varying cardiac axis deviation angles $\theta (t)$ in the frontal plane. Three statistical features are obtained: mean angle $\mu _\theta$, angular variance $\sigma _\theta ^{2}$, and lead correlation coefficient $\rho _{\text{I, II}}$. Experimental testing on PTB-XL and PTB datasets establishes state-of-the-art performance at 89.2% and 84.1% accuracy, respectively, without redundant computations native to multilead ECG. The approach ensures clinical-grade accuracy with $O(1)$ feature extraction complexity, providing an optimal tradeoff between accuracy and computational efficiency for resource-constrained wearable ECG sensors and tele-ECG applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信