同轴等离子体-介电动力系统的宽带切伦科夫放大器

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, FLUIDS & PLASMAS
A. V. Ershov, M. V. Kuzelev
{"title":"同轴等离子体-介电动力系统的宽带切伦科夫放大器","authors":"A. V. Ershov,&nbsp;M. V. Kuzelev","doi":"10.1134/S1063780X25602962","DOIUrl":null,"url":null,"abstract":"<p>An electromagnetic wave amplifier based on the forced Cherenkov effect of a relativistic thin tubular electron beam in a coaxial waveguide with a plasma-dielectric filling is considered. In the linear approximation, a dispersion equation is derived, amplified frequency domains are defined, and wave amplification factors are calculated. Two maximum amplification modes were studied depending on the beam-dielectric gap and frequency. The nonlinear dynamics of the amplification process was investigated. Amplification efficiencies for different beam currents and different frequencies of the amplified signal were determined. The effect of plasma on wave amplification in a coaxial waveguide with a dielectric insert was studied in detail. The interaction of the beam with the potential Langmuir wave in plasma was shown to affect but slightly the amplification of electromagnetic waves.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"51 5","pages":"576 - 598"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband Cherenkov Amplifier with a Coaxial Plasma-Dielectric Electrodynamic System\",\"authors\":\"A. V. Ershov,&nbsp;M. V. Kuzelev\",\"doi\":\"10.1134/S1063780X25602962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An electromagnetic wave amplifier based on the forced Cherenkov effect of a relativistic thin tubular electron beam in a coaxial waveguide with a plasma-dielectric filling is considered. In the linear approximation, a dispersion equation is derived, amplified frequency domains are defined, and wave amplification factors are calculated. Two maximum amplification modes were studied depending on the beam-dielectric gap and frequency. The nonlinear dynamics of the amplification process was investigated. Amplification efficiencies for different beam currents and different frequencies of the amplified signal were determined. The effect of plasma on wave amplification in a coaxial waveguide with a dielectric insert was studied in detail. The interaction of the beam with the potential Langmuir wave in plasma was shown to affect but slightly the amplification of electromagnetic waves.</p>\",\"PeriodicalId\":735,\"journal\":{\"name\":\"Plasma Physics Reports\",\"volume\":\"51 5\",\"pages\":\"576 - 598\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063780X25602962\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X25602962","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种基于等离子体介质填充的同轴波导中相对论性细管电子束的强迫切伦科夫效应的电磁波放大器。在线性近似中,推导了色散方程,定义了放大频域,计算了波的放大系数。研究了两种随波束介电间隙和频率变化的最大放大模式。研究了放大过程的非线性动力学。测定了不同波束电流和不同频率下放大信号的放大效率。详细研究了等离子体对带介质插入的同轴波导中波放大的影响。等离子体中束流与电位朗缪尔波的相互作用对电磁波的放大有轻微的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Broadband Cherenkov Amplifier with a Coaxial Plasma-Dielectric Electrodynamic System

Broadband Cherenkov Amplifier with a Coaxial Plasma-Dielectric Electrodynamic System

Broadband Cherenkov Amplifier with a Coaxial Plasma-Dielectric Electrodynamic System

An electromagnetic wave amplifier based on the forced Cherenkov effect of a relativistic thin tubular electron beam in a coaxial waveguide with a plasma-dielectric filling is considered. In the linear approximation, a dispersion equation is derived, amplified frequency domains are defined, and wave amplification factors are calculated. Two maximum amplification modes were studied depending on the beam-dielectric gap and frequency. The nonlinear dynamics of the amplification process was investigated. Amplification efficiencies for different beam currents and different frequencies of the amplified signal were determined. The effect of plasma on wave amplification in a coaxial waveguide with a dielectric insert was studied in detail. The interaction of the beam with the potential Langmuir wave in plasma was shown to affect but slightly the amplification of electromagnetic waves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Physics Reports
Plasma Physics Reports 物理-物理:流体与等离子体
CiteScore
1.90
自引率
36.40%
发文量
104
审稿时长
4-8 weeks
期刊介绍: Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信