基于互信息和能量效率的分布式无线尖峰神经网络神经形态编码比较

IF 3.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Pietro Savazzi;Anna Vizziello;Fabio Dell’Acqua
{"title":"基于互信息和能量效率的分布式无线尖峰神经网络神经形态编码比较","authors":"Pietro Savazzi;Anna Vizziello;Fabio Dell’Acqua","doi":"10.1109/JRFID.2025.3600048","DOIUrl":null,"url":null,"abstract":"Wireless spiking neural networks (WSNNs) enable energy-efficient communication, particularly beneficial for edge intelligence and learning within both terrestrial systems and Earth-space network configurations (beyond 5G/6G). Recent studies have highlighted that distributed wireless SNNs (DWSNNs) perform well in inference accuracy and energy-efficient operation in edge devices, despite the challenges posed by constrained bandwidth and spike loss probability. This makes the technology appealing for wireless sensor networks (WSNs) in space scenarios, where energy limitations are significant. In this paper, we explore neuromorphic impulse radio (IR) transmission methodologies tailored for DWSNNs, investigating various coding algorithms that implement IR modulations. Our assessment employs information-theoretic measures to evaluate performance in terms of transmission efficiency. Moreover, the different neuromorphic coding techniques will be evaluated by considering the energy consumption of edge devices under the same constraints of limited bandwidth and additive white Gaussian noise (AWGN), in order to highlight possible trade-offs between transmission and edge inference requirements.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"658-668"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Neuromorphic Coding for Distributed Wireless Spiking Neural Networks Based on Mutual Information and Energy Efficiency\",\"authors\":\"Pietro Savazzi;Anna Vizziello;Fabio Dell’Acqua\",\"doi\":\"10.1109/JRFID.2025.3600048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless spiking neural networks (WSNNs) enable energy-efficient communication, particularly beneficial for edge intelligence and learning within both terrestrial systems and Earth-space network configurations (beyond 5G/6G). Recent studies have highlighted that distributed wireless SNNs (DWSNNs) perform well in inference accuracy and energy-efficient operation in edge devices, despite the challenges posed by constrained bandwidth and spike loss probability. This makes the technology appealing for wireless sensor networks (WSNs) in space scenarios, where energy limitations are significant. In this paper, we explore neuromorphic impulse radio (IR) transmission methodologies tailored for DWSNNs, investigating various coding algorithms that implement IR modulations. Our assessment employs information-theoretic measures to evaluate performance in terms of transmission efficiency. Moreover, the different neuromorphic coding techniques will be evaluated by considering the energy consumption of edge devices under the same constraints of limited bandwidth and additive white Gaussian noise (AWGN), in order to highlight possible trade-offs between transmission and edge inference requirements.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":\"9 \",\"pages\":\"658-668\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11129145/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11129145/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

无线尖峰神经网络(wsnn)可实现高能效通信,尤其有利于地面系统和地球空间网络配置(超过5G/6G)中的边缘智能和学习。最近的研究表明,分布式无线snn (dwsnn)在边缘设备中表现出良好的推理精度和节能运行,尽管带宽受限和尖峰损失概率带来了挑战。这使得该技术对空间场景中的无线传感器网络(wsn)具有吸引力,其中能量限制很重要。在本文中,我们探讨了为dwsnn量身定制的神经形态脉冲无线电(IR)传输方法,研究了实现IR调制的各种编码算法。我们的评估采用信息论的方法来评估传输效率方面的性能。此外,将通过考虑在有限带宽和加性高斯白噪声(AWGN)的相同约束下边缘设备的能量消耗来评估不同的神经形态编码技术,以突出传输和边缘推理要求之间可能的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of Neuromorphic Coding for Distributed Wireless Spiking Neural Networks Based on Mutual Information and Energy Efficiency
Wireless spiking neural networks (WSNNs) enable energy-efficient communication, particularly beneficial for edge intelligence and learning within both terrestrial systems and Earth-space network configurations (beyond 5G/6G). Recent studies have highlighted that distributed wireless SNNs (DWSNNs) perform well in inference accuracy and energy-efficient operation in edge devices, despite the challenges posed by constrained bandwidth and spike loss probability. This makes the technology appealing for wireless sensor networks (WSNs) in space scenarios, where energy limitations are significant. In this paper, we explore neuromorphic impulse radio (IR) transmission methodologies tailored for DWSNNs, investigating various coding algorithms that implement IR modulations. Our assessment employs information-theoretic measures to evaluate performance in terms of transmission efficiency. Moreover, the different neuromorphic coding techniques will be evaluated by considering the energy consumption of edge devices under the same constraints of limited bandwidth and additive white Gaussian noise (AWGN), in order to highlight possible trade-offs between transmission and edge inference requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信