RCFusionNet:一种雷达引导的有效多模态感知的两阶段融合方法

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Weifan Xu;Xiangwei Meng;Yong Hu;Hai Deng
{"title":"RCFusionNet:一种雷达引导的有效多模态感知的两阶段融合方法","authors":"Weifan Xu;Xiangwei Meng;Yong Hu;Hai Deng","doi":"10.1109/JSEN.2025.3592236","DOIUrl":null,"url":null,"abstract":"Multisensor fusion perception plays a pivotal role in advancing autonomous driving. While most existing LiDAR–camera (LC) fusion methods achieve high detection accuracy, LiDAR is inherently vulnerable to extreme weather conditions and is costlier compared to microwave radar. In this work, we introduce a robust radar–camera (RC) fusion model, RCFusionNet, aimed at delivering enhanced and robust detection performances under adverse weather conditions. Specifically, we introduce a camera feature encoder (CFE) to enhance the capability of visual representations, which incorporate multiscale bird’s-eye view (BEV) features to further enhance the detection performance. Additionally, a radar feature encoder (RFE) is introduced to fully exploit radar point cloud data by selectively extracting informative radar features. Furthermore, we adopt a radar-guided two-stage fusion strategy (RGTSFS), applied during both the BEV feature generation and the RC feature fusion phases. Extensive evaluations on the nuScenes benchmark demonstrate the effectiveness of our RCFusionNet.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 17","pages":"33890-33900"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RCFusionNet: A Radar-Guided Two-Stage Fusion Approach to Effective Multimodal Perception\",\"authors\":\"Weifan Xu;Xiangwei Meng;Yong Hu;Hai Deng\",\"doi\":\"10.1109/JSEN.2025.3592236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multisensor fusion perception plays a pivotal role in advancing autonomous driving. While most existing LiDAR–camera (LC) fusion methods achieve high detection accuracy, LiDAR is inherently vulnerable to extreme weather conditions and is costlier compared to microwave radar. In this work, we introduce a robust radar–camera (RC) fusion model, RCFusionNet, aimed at delivering enhanced and robust detection performances under adverse weather conditions. Specifically, we introduce a camera feature encoder (CFE) to enhance the capability of visual representations, which incorporate multiscale bird’s-eye view (BEV) features to further enhance the detection performance. Additionally, a radar feature encoder (RFE) is introduced to fully exploit radar point cloud data by selectively extracting informative radar features. Furthermore, we adopt a radar-guided two-stage fusion strategy (RGTSFS), applied during both the BEV feature generation and the RC feature fusion phases. Extensive evaluations on the nuScenes benchmark demonstrate the effectiveness of our RCFusionNet.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 17\",\"pages\":\"33890-33900\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11104960/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11104960/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多传感器融合感知在推进自动驾驶中发挥着关键作用。虽然大多数现有的激光雷达-相机(LC)融合方法都能实现高检测精度,但激光雷达本身就容易受到极端天气条件的影响,而且与微波雷达相比,激光雷达的成本更高。在这项工作中,我们引入了一种鲁棒雷达-相机(RC)融合模型RCFusionNet,旨在在恶劣天气条件下提供增强和鲁棒的检测性能。具体来说,我们引入了一种相机特征编码器(CFE)来增强视觉表示能力,该编码器结合了多尺度鸟瞰(BEV)特征来进一步提高检测性能。此外,引入雷达特征编码器(RFE),通过选择性提取信息雷达特征来充分利用雷达点云数据。此外,我们采用雷达制导的两阶段融合策略(RGTSFS),应用于BEV特征生成和RC特征融合阶段。对nuScenes基准的广泛评估证明了我们的RCFusionNet的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RCFusionNet: A Radar-Guided Two-Stage Fusion Approach to Effective Multimodal Perception
Multisensor fusion perception plays a pivotal role in advancing autonomous driving. While most existing LiDAR–camera (LC) fusion methods achieve high detection accuracy, LiDAR is inherently vulnerable to extreme weather conditions and is costlier compared to microwave radar. In this work, we introduce a robust radar–camera (RC) fusion model, RCFusionNet, aimed at delivering enhanced and robust detection performances under adverse weather conditions. Specifically, we introduce a camera feature encoder (CFE) to enhance the capability of visual representations, which incorporate multiscale bird’s-eye view (BEV) features to further enhance the detection performance. Additionally, a radar feature encoder (RFE) is introduced to fully exploit radar point cloud data by selectively extracting informative radar features. Furthermore, we adopt a radar-guided two-stage fusion strategy (RGTSFS), applied during both the BEV feature generation and the RC feature fusion phases. Extensive evaluations on the nuScenes benchmark demonstrate the effectiveness of our RCFusionNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信