四轮独立驱动车辆的双层分层功能控制策略:协调提高稳定性和安全性

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhiqi Guo;Liang Chu;Xiaoxu Wang;Yuhang Xiao;Zixu Wang;Zhuoran Hou
{"title":"四轮独立驱动车辆的双层分层功能控制策略:协调提高稳定性和安全性","authors":"Zhiqi Guo;Liang Chu;Xiaoxu Wang;Yuhang Xiao;Zixu Wang;Zhuoran Hou","doi":"10.1109/OJVT.2025.3596560","DOIUrl":null,"url":null,"abstract":"With the advancement of electric vehicles towards intelligence and integration, four-wheel independent drive (FWID) vehicles, characterized by high controllability and structural flexibility, have gained widespread attention. Due to multi-degree-of-freedom coupling characteristics, the FWID constitutes complex nonlinear system, necessitating an adaptive control framework to enhance stability and safety. In this paper, a dual-level hierarchical functional control (DHFC) is proposed for FWID, aiming to exploit the potential of the FWID in achieving coordinated optimization of driving safety and stability. The high-level controller is designed to accurately determine the global stability status of FWID by enhancing both parameter estimation accuracy and safety constraints. A reinforcement learning-enhanced high-order cubature Kalman filter (RL-HCKF) improves adaptability and responsiveness in FWID state estimation. Additionally, a hybrid offline-online region of attraction (ROA) identification mechanism is established to delineate safety constraint boundaries for FWID. Meanwhile, the low-level controller adopts stochastic model predictive control (SMPC) to synthesize wheel-level torque vectoring, with dynamically adjusted constraints to enhance the robustness and safety of FWID under uncertain conditions. Simulation evaluations and hardware-in-the-loop (HIL) tests confirm the effectiveness of the proposed strategy. The results demonstrate that, compared to representative existing methods, the DHFC exhibits superior control stability and disturbance adaptability under various driving conditions.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2255-2271"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11119462","citationCount":"0","resultStr":"{\"title\":\"A Dual-Level Hierarchical Functional Control Strategy for Four-Wheel Independent Drive Vehicles: Coordination for Enhanced Stability and Safety\",\"authors\":\"Zhiqi Guo;Liang Chu;Xiaoxu Wang;Yuhang Xiao;Zixu Wang;Zhuoran Hou\",\"doi\":\"10.1109/OJVT.2025.3596560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advancement of electric vehicles towards intelligence and integration, four-wheel independent drive (FWID) vehicles, characterized by high controllability and structural flexibility, have gained widespread attention. Due to multi-degree-of-freedom coupling characteristics, the FWID constitutes complex nonlinear system, necessitating an adaptive control framework to enhance stability and safety. In this paper, a dual-level hierarchical functional control (DHFC) is proposed for FWID, aiming to exploit the potential of the FWID in achieving coordinated optimization of driving safety and stability. The high-level controller is designed to accurately determine the global stability status of FWID by enhancing both parameter estimation accuracy and safety constraints. A reinforcement learning-enhanced high-order cubature Kalman filter (RL-HCKF) improves adaptability and responsiveness in FWID state estimation. Additionally, a hybrid offline-online region of attraction (ROA) identification mechanism is established to delineate safety constraint boundaries for FWID. Meanwhile, the low-level controller adopts stochastic model predictive control (SMPC) to synthesize wheel-level torque vectoring, with dynamically adjusted constraints to enhance the robustness and safety of FWID under uncertain conditions. Simulation evaluations and hardware-in-the-loop (HIL) tests confirm the effectiveness of the proposed strategy. The results demonstrate that, compared to representative existing methods, the DHFC exhibits superior control stability and disturbance adaptability under various driving conditions.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"2255-2271\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11119462\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11119462/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11119462/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着电动汽车向智能化、集成化方向发展,四轮独立驱动汽车以其高可控性和结构灵活性等特点得到了广泛关注。由于多自由度的耦合特性,FWID构成了一个复杂的非线性系统,需要一个自适应的控制框架来提高稳定性和安全性。本文提出了一种双级分层功能控制(DHFC),旨在发挥FWID在实现驾驶安全性与稳定性协调优化中的潜力。高级控制器通过提高参数估计精度和安全约束条件,精确地确定了FWID的全局稳定状态。一种强化学习增强的高阶培养卡尔曼滤波器(RL-HCKF)提高了FWID状态估计的适应性和响应性。此外,建立了一种离线-在线混合吸引区域识别机制,以划定FWID的安全约束边界。同时,底层控制器采用随机模型预测控制(SMPC)综合轮级转矩矢量,并通过动态调整约束来增强FWID在不确定条件下的鲁棒性和安全性。仿真评估和硬件在环(HIL)测试验证了所提策略的有效性。结果表明,与代表性的现有方法相比,DHFC在各种驾驶条件下具有更好的控制稳定性和扰动适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dual-Level Hierarchical Functional Control Strategy for Four-Wheel Independent Drive Vehicles: Coordination for Enhanced Stability and Safety
With the advancement of electric vehicles towards intelligence and integration, four-wheel independent drive (FWID) vehicles, characterized by high controllability and structural flexibility, have gained widespread attention. Due to multi-degree-of-freedom coupling characteristics, the FWID constitutes complex nonlinear system, necessitating an adaptive control framework to enhance stability and safety. In this paper, a dual-level hierarchical functional control (DHFC) is proposed for FWID, aiming to exploit the potential of the FWID in achieving coordinated optimization of driving safety and stability. The high-level controller is designed to accurately determine the global stability status of FWID by enhancing both parameter estimation accuracy and safety constraints. A reinforcement learning-enhanced high-order cubature Kalman filter (RL-HCKF) improves adaptability and responsiveness in FWID state estimation. Additionally, a hybrid offline-online region of attraction (ROA) identification mechanism is established to delineate safety constraint boundaries for FWID. Meanwhile, the low-level controller adopts stochastic model predictive control (SMPC) to synthesize wheel-level torque vectoring, with dynamically adjusted constraints to enhance the robustness and safety of FWID under uncertain conditions. Simulation evaluations and hardware-in-the-loop (HIL) tests confirm the effectiveness of the proposed strategy. The results demonstrate that, compared to representative existing methods, the DHFC exhibits superior control stability and disturbance adaptability under various driving conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信